# Lesson 1

Representemos números de distintas maneras

## Warm-up: Cuál es diferente: Números hasta 1,000 (10 minutes)

### Narrative

This warm-up prompts students to compare numbers represented in different ways. It gives the teacher an opportunity to hear how students use terminology and talk about characteristics of the items in comparison to one another. During the synthesis, ask students to explain the meaning of any terminology they use, such as place value, hundreds, tens, ones, sum, or base-ten diagram.

### Launch

• Groups of 2
• Display the image and expressions.
• “Escojan una que sea diferente. Prepárense para compartir por qué es diferente” // “Pick one that doesn’t belong. Be ready to share why it doesn’t belong.”
• 1 minute: quiet think time

### Activity

• “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
• 2-3 minutes: partner discussion
• Share and record responses.

### Student Facing

¿Cuál es diferente?

A.

B. $$300 + 70 + 1$$

C. $$300 + 60 + 10$$

D. $$400 - 30$$

### Activity Synthesis

• “¿Qué tienen en común todas estas maneras de mostrar números?” // “What do all of these ways of showing numbers have in common?” (The parts of the number have been separated into hundreds, tens, and ones.)
• “Recuerden que la forma desarrollada es una manera específica de escribir un número como una suma de centenas, decenas y unidades. Está escrita como la suma de los valores de cada dígito, como en B” // “Remember that expanded form is a specific way of writing a number as a sum of hundreds, tens, and ones. It is written as a sum of the value of each digit like in B.”
• “¿Cómo escribirían 482 en forma desarrollada?” // "How would we write 482 in expanded form?” $$(400 + 80 + 2)$$

## Activity 1: Clasificación de tarjetas: Números en sus diferentes formas (15 minutes)

### Narrative

The purpose of this activity is for students to revisit numbers that are written in different forms. Students match numbers represented in different forms: base-ten numerals, base-ten diagrams, number names, and expanded form. As they make matches, students use their understanding of base-ten structure represented in many different ways (MP7).

MLR8 Discussion Supports. Students should take turns finding a match and explaining their reasoning to their partner. Display the following sentence frames for all to see: “Observé que ____, entonces agrupé . . .” // “I noticed ___ , so I matched . . .” Encourage students to challenge each other when they disagree.
Engagement: Develop Effort and Persistence. Chunk this task into more manageable parts. Give students a subset of the cards to start with and introduce the remaining cards once students have completed their initial set of matches.
Supports accessibility for: Attention, Visual-Spatial Processing

### Required Materials

Materials to Gather

Materials to Copy

• Card Sort: Numbers in Their Different Forms, Spanish

### Required Preparation

• Create a set of cards from the blackline master for each group of 2.

### Launch

• Groups of 2
• Distribute one set of pre-cut cards to each group of students.

### Activity

• Estas tarjetas muestran números de distintas formas. Agrupen las tarjetas que correspondan. Trabajen con su pareja para explicar sus agrupaciones” // “This set of cards includes numbers in different forms. Find the cards that match. Work with your partner to explain your matches.”
• 8 minutes: partner work time

### Student Facing

Tu profesor te va a dar varias tarjetas que muestran números de distintas formas.

Agrupa las tarjetas que representen el mismo número. Anota tus grupos acá. Prepárate para explicar tu razonamiento.

### Student Response

If students don't match base-ten numerals to the other representations, consider asking:

• “¿Qué representa cada dígito del número?” // “What does each digit in the number represent?”
• “¿Cómo puedes usar lo que representa cada dígito para agruparlo con otra representación?” // “How could we use what each digit represents to match it to another representation?”

### Activity Synthesis

• Invite students to share the matches they made and how they know those cards go together.
• Attend to the language that students use to describe their matches and numbers in different forms, giving them opportunities to describe the numbers in different forms more precisely.
• Highlight the use of terms like hundreds, tens, ones, word form, expanded form, base-ten blocks, and base-ten diagrams.

## Activity 2: Mesa redonda de números en distintas formas (20 minutes)

### Narrative

The purpose of this activity is for students to use place value understanding from grade 2 to decompose numbers in different ways. In small groups, students start by writing a three-digit number, and then pass their number to the group member to their right. Each time students receive the number, they decompose it in a different way. In the synthesis, students look for connections in the ways their number was decomposed, and in all the recording sheets in their group. Highlight connections that show that place value can be used to represent a number as different combinations of hundreds, tens, and ones. This will be helpful later in the unit when students add and subtract using strategies and algorithms based on place value.

### Required Materials

Materials to Gather

Materials to Copy

• Numbers in Different Forms Round Table, Spanish

### Launch

• Groups of 4
• Display: 365
• “¿De qué maneras podrían descomponer este número?” // “What are some ways you could decompose this number?”
• 30 seconds: quiet think time
• Share and record responses.
• Give each student a copy of the blackline master.
• “Piensen en un número de tres dígitos. Lo van a usar en esta actividad” // “Take a minute and think of a three-digit number that you will use for this activity.“
• 30 seconds: quiet think time.
• “Ahora escriban su número en el primer recuadro de su hoja” // “Now write your number in the first box on your sheet.”

### Activity

Part 1

• “Pasen su hoja a la derecha y reciban la hoja de la izquierda. La hoja tiene un número en el recuadro 1. En el recuadro 2, muestren una forma en la que se pueda descomponer el número que les acaban de pasar” // “Pass your paper to your right and receive the paper from your left. The paper has a number in Box 1. In Box 2, show one way the number you were just passed can be decomposed.”
• 1-2 minutes: independent work time
• “Pasen la hoja a la derecha y reciban la hoja de la izquierda. La hoja tiene un número en el recuadro 1 y una manera de descomponerlo en el recuadro 2. En el recuadro 3, muestren otra manera en la que se puede descomponer el número que les acaban de pasar” // “Pass your paper to your right and receive the paper from your left. The paper has a number in Box 1 and one way of decomposing that number in Box 2. In Box 3, show another way the number you were just passed can be decomposed.”
• 1-2 minutes: independent work time
• “Pasen la hoja a la derecha y reciban la hoja de la izquierda. La hoja muestra dos maneras en las que se puede descomponer un número. En el recuadro 4, muestren otra manera en la que se puede descomponer ese número” // “Pass your paper to your right and receive the paper from your left. The paper shows two ways of decomposing a number. In Box 4, show another way to decompose that number.”
• 1-2 minutes: independent work time
• “Pasen su hoja una vez más. Deben recibir su número original de vuelta” // “Pass your paper one more time. You should have your original number back.”
• “Hablen con su grupo sobre cuál recuadro fue el más difícil de completar. Compartan ideas sobre qué les sirvió más durante esta actividad” // “Talk to your group about which box was the most difficult for you to fill in. Share ideas about what helped you most during this activity.”
• 2-3 minutes: group discussion
• Share responses.
Part 2
• “Miren lo que se escribió para representar su número. Escriban todas las relaciones que observen entre las distintas maneras en las que el número se representó” // “Look at what was written to represent your number. Write down any connections you notice between the different ways the number was represented.”
• 3 minutes: independent work time
• “Ahora, miren todas las hojas de registro. ¿Qué patrones observan en las maneras en las que los números se descompusieron?” // “Now, look at the recording sheets of everyone in your group. What patterns do you notice in the ways the numbers are decomposed?”
• 2-3 minutes: group discussion

### Student Facing

Tu profesor te va a dar una hoja de registro.

Parte 1

1. En el recuadro 1, escribe un número de tres dígitos (haz una pausa para escuchar las instrucciones del profesor).
2. En el recuadro 2, muestra una manera de descomponer el número (haz una pausa para escuchar las instrucciones del profesor).
3. En el recuadro 3, muestra una manera de descomponer el número que sea diferente a la del recuadro 2 (haz una pausa para escuchar las instrucciones del profesor).
4. En el recuadro 4, muestra una manera de descomponer el número que sea diferente a la de los recuadros 2 y 3.

Parte 2

1. Observa las diferentes maneras en las que se descompuso tu número en tu hoja de registro. ¿Qué relaciones ves entre ellas?
2. Observa todas las hojas de registro de tu grupo. ¿Qué patrones observas en las maneras en las que los números se descomponen?

### Student Response

If students don't generate decompositions based on place value, consider asking:

• “¿Cómo descompusiste el número?” // “How did you decompose the number?”
• “¿Cómo puedes usar los bloques en base diez para encontrar otras maneras de descomponer el número?” // “How could you use base-ten blocks to come up with other ways to decompose the number?”

### Activity Synthesis

• Have groups share the connections they saw across the sheets.

## Lesson Synthesis

### Lesson Synthesis

Display: 253

“Hoy descompusimos números de muchas maneras diferentes. ¿Cuáles son algunas de las maneras en las que podemos descomponer 253?” // “Today we decomposed numbers in lots of different ways. What are some ways that we could decompose 253?” ($$200+50+3$$, $$200+40+13$$, $$100+150+3$$)

Display: $$253 + 134$$

“Si estuvieran sumando 253 y 134, ¿qué manera de descomponer los números creen que les ayudaría más? ¿Por qué?” // “If you were adding 253 and 134, which way of decomposing the numbers do you think would be most helpful and why?” (I think decomposing them by hundreds, tens, and ones would be most helpful so you could add hundreds and hundreds, tens and tens, and ones and ones.)