# Lesson 7

Fracciones equivalentes

## Warm-up: Verdadero o falso: Equivalencia (10 minutes)

### Narrative

The purpose of this warm-up is to elicit students’ prior understanding of equivalence and strategies for comparing fractions. To determine equivalence, students may rely on familiarity with benchmark fractions, use fraction strips, or think about the relative sizes of the fractional parts. They may also use their knowledge about fractions with the same numerator or denominator. In any case, students have opportunities to look for and make use of structure (MP7).

### Launch

• Display one statement.
• “Hagan una señal cuando sepan si la afirmación es verdadera o no, y puedan explicar cómo lo saben” // “Give me a signal when you know whether the statement is true and can explain how you know.”
• 1 minute: quiet think time

### Activity

• Share and record answers and strategy.
• Repeat with each statement.

### Student Facing

Decide si cada afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.

• $$\frac{4}{8}=\frac{7}{8}$$
• $$\frac{3}{4}=\frac{6}{8}$$
• $$\frac{2}{6}=\frac{2}{8}$$
• $$\frac{6}{3}=\frac{4}{2}$$

### Activity Synthesis

• If no students refer to a visual representation (a tape diagram or number line) to explain an equation such as $$\frac{3}{4}=\frac{6}{8}$$, ask how one of these representations could help with their explanation.
• “En la pareja de fracciones que saben que no son iguales, ¿pueden decidir cuál es mayor? ¿Cómo?” // “For the pair of fractions that you know are not equal, can you tell which fraction is greater? How?”

## Activity 1: Dos o más fracciones (20 minutes)

### Narrative

The purpose of this activity is to elicit strategies for finding equivalent fractions when the fractions are represented by tape diagrams or points on the number line. Students may reason in various ways, but here are two likely approaches:

• partition given fractional parts into smaller equal-size parts and count the new parts (for instance, partitioning each 1 fourth into 3 parts and then counting the twelfths).
• bundle given fractional parts into larger equal-size groups and count the new groups (for instance, bundling every 2 tenths to make 5 fifths in 1 whole and then counting the fifths).

During this and upcoming activity syntheses, help students recognize regularity in their moves to find equivalent fractions. In future lessons, students will connect more explicitly how diagrams of equivalent fractions relate to a numerical process for generating them. They will relate the subdividing or grouping fractional parts to the idea of using multiples and factors to find equivalent fractions.

Representation: Internalize Comprehension. Synthesis: Invite students to identify which details were required to solve the problem. Display the sentence frame, “La próxima vez que encuentre fracciones equivalentes, seguiré los pasos de . . . ” // “The next time I find equivalent fractions, I will follow the steps of. . . .”
Supports accessibility for: Conceptual Processing, Language

### Launch

• Groups of 2
• “En esta actividad, verán diagramas y rectas numéricas que representan fracciones” // “In this activity, you’ll see diagrams and number lines that represent fractions.”
• “Encuentren al menos dos fracciones que describan la parte sombreada de cada diagrama y dos fracciones que correspondan al punto en cada recta numérica” // “Find at least two fractions to describe the shaded part of each diagram, and two fractions for the point on each number line.”

### Activity

• “Tómense 5 minutos para trabajar individualmente en el primer problema. Después, compartan con su compañero lo que pensaron” //  “Take 5 minutes to work independently on the first problem. Afterwards, share your thinking with your partner. ”
• 5 minutes: independent work time for the first problem
• 2 minutes: partner discussion
• “Ahora, tómense unos minutos para trabajar de manera individual en el segundo problema” // “Now take a few minutes to work independently on the second problem.”
• 5 minutes: independent work time for the remaining problems
• 2 minutes: partner discussion
• Monitor for students who:
• partition each unit fraction (a single section on a tape diagram or an interval on a number line) into smaller parts
• bundle multiple unit fractions into larger groups
• Identify 2–3 students who reason differently on tape diagrams and 2–3 who reason differently on number lines.

### Student Facing

1. Cada diagrama completo representa 1 unidad. Escribe dos o más fracciones que correspondan a la parte sombreada de cada diagrama. Prepárate para explicar tu razonamiento.

2. Escribe dos o más fracciones que correspondan al punto en cada recta numérica. Prepárate para explicar tu razonamiento.

3. Ubica un punto nuevo sobre una marca en una de las dos últimas rectas numéricas (en la parte c o la d). Después, escribe dos fracciones que correspondan al punto.

### Student Response

Students label number lines using tick marks alone. For example if 4 marks are visible (including zero) each line would be labeled as fourths instead of thirds. If this happens, consider using the idea of movement from 0 to 1. Ask: “¿Dónde está 1 en la recta numérica?” // “Where is 1 on the number line?” ”Si nos movemos de 0 a 1, ¿qué significa esta marca entre 0 y 1?” // “If we are moving from 0 toward 1, what does this tick mark between 0 and 1 mean?” Ask students to review the labels on their number lines and decide if revisions are needed before continuing to work on the next activity.

### Activity Synthesis

• Select previously identified students to share how they found multiple equivalent fractions on the two kinds of representations. Display their work, or display the diagrams in the activity for them to annotate as they explain.
• “¿En qué se parece el proceso de encontrar fracciones equivalentes con diagramas al proceso con rectas numéricas?” // “How is the process of finding equivalent fractions using diagrams like the process of using number lines?” (They both involve partitioning given parts into smaller parts, or bundling the given parts into larger parts.)
• “¿En qué son diferentes?” // “How are they different?” (The length of a diagram usually is 1 whole or another whole number. A number line doesn’t always show 1 whole, so we may have to figure out where it is first.)
• If time permits: “¿Pueden escribir otras fracciones equivalentes para el diagrama _____?” // “Can you write other equivalent fractions for diagram _____?” (Sample response for the last number line diagram: $$\frac{15}{12}$$, $$\frac{20}{16}$$)
• “¿Cuántas fracciones creen que podrían escribir para ese diagrama?” // “How many fractions do you think you could write for that diagram?” (This prompts students to begin to realize that there are infinite equivalent fractions as the whole is partitioned into smaller parts.)

## Activity 2: ¿Seguro que es equivalente? (15 minutes)

### Narrative

In this activity, students find equivalent fractions for fractions given numerically. They also work to clearly convey their thinking to a partner, which involves choosing and using words, numbers, or other representations with care. In doing so, students practice attending to precision (MP6) as they communicate about mathematics.

### Launch

• Groups of 2
• “Trabajen con un compañero en esta actividad. Una persona es el compañero A y la otra es el compañero B” // “Work with a partner on this activity. One person is partner A and the other is B.”
• “Su tarea es encontrar dos fracciones equivalentes para cada fracción que les corresponde y, después, convencer a su compañero de que sus fracciones son equivalentes” // “Your task is to find two equivalent fractions for each fraction listed under A or B, and then convince your partner that your fractions are equivalent.”

### Activity

• “Tómense 5 o 6 minutos en silencio para encontrar fracciones equivalentes y preparar su explicación” // “Take 5 to 6 quiet minutes to find equivalent fractions and to plan your explanation.”
• 5–6 minutes: independent work time
• “Por turnos, compartan sus fracciones y explicaciones con su compañero” // “Take turns sharing your fractions and explanation with your partner.”
• “Cuando su compañero explique, escuchen con atención su razonamiento y pídanle que aclare lo que no sea claro” //  “When your partner explains, listen carefully to their reasoning and ask them to clarify if something is unclear.”
• 5–6 minutes: partner discussion

### Student Facing

Para cada fracción, encuentra dos fracciones equivalentes.

Compañero A

1. $$\frac{3}{2}$$
2. $$\frac{10}{6}$$

Compañero B

1. $$\frac{4}{3}$$
2. $$\frac{14}{10}$$

Ahora, muéstrale o explícale a tu compañero cómo sabes que las fracciones que escribiste son equivalentes a la original. Usa cualquier representación que consideres útil.

### Activity Synthesis

MLR7 Compare and Connect
• “Hagan una representación visual que muestre cómo encontraron dos fracciones equivalentes para la segunda fracción de su lista: $$\frac{10}{6}$$ para el compañero A y $$\frac{14}{10}$$  para el compañero B” // “Create a visual display that shows how you found two equivalent fractions for the second fraction on your list: $$\frac{10}{6}$$ for Partner A, and $$\frac{14}{10}$$ for Partner B.”
• “Incluyan diagramas, notas y cualquier descripción que pueda ayudar a otros a entender lo que pensaron” // “Include diagrams, notes, and any descriptions that might help others understand your thinking.”
• See lesson synthesis.

## Lesson Synthesis

### Lesson Synthesis

Ask students to display their work around the room.

“Tómense unos minutos para recorrer el salón y observar el trabajo de al menos 4 compañeros de clase. Asegúrense de observar el trabajo de ambos compañeros, A y B” // “Take a few minutes to walk around and look at the work of at least 4 classmates. Make sure to look at the work by both partners, A and B.”

“Mientras analizan el trabajo de otros, piensen en qué se parecen y en qué son diferentes sus razonamientos” // “As you study others’ work, pay attention to how the reasoning is alike and how it is different.”

“¿En qué se parecen los diagramas, las palabras o las explicaciones que vieron?, ¿en qué son diferentes?” // “What is the same about the diagrams, words, or explanations that you saw? What is different?”