# Lesson 3

Equations for Functions

## 3.1: A Square’s Area (5 minutes)

### Warm-up

The purpose of this warm-up is for students to use repeated reasoning to write an algebraic expression to represent a rule of a function (MP8). The whole-class discussion should focus on the algebraic expression in the final row, however the numbers in the table give students an opportunity to also practice calculating the square of numbers written in fraction and decimal form.

### Launch

Arrange students in groups of 2. Give students 1–2 minutes of quiet work time and then time to share their algebraic expression with their partner. Follow with a whole-class discussion.

### Student Facing

Fill in the table of input-output pairs for the given rule. Write an algebraic expression for the rule in the box in the diagram.

input output
8
2.2
$$12\frac14$$
$$s$$

### Activity Synthesis

Select students to share how they found each of the outputs. After each response, ask the class if they agree or disagree. Record and display responses for all to see. If both responses are not mentioned by students for the last row, tell students that we can either put $$s^2$$ or $$A$$ there. Tell students we can write the equation $$A = s^2$$ to represent the rule of this function.

End the discussion by telling students that while we’ve used the terms input and output so far to talk about specific values, when a letter is used to represent any possible input we call it the independent variable and the letter used to represent all the possible outputs is the dependent variable. Students may recall these terms from earlier grades. In this case, $$s$$ is the independent variable and $$A$$ the dependent variable, and we say “$$A$$ depends on $$s$$.”

## 3.2: Diagrams, Equations, and Descriptions (15 minutes)

### Activity

The purpose of this activity is for students to make connections between different representations of functions and start transitioning from input-output diagrams to other representations of functions. Students match input-output diagrams to descriptions and come up with equations for each of those matches. Students then calculate an output given a specific input and determine the independent and dependent variables.

### Launch

Arrange students in groups of 2. Give students 3–5 minutes of quiet work time and time to share their responses with their partner and come to agreement on their answers. Follow with whole-class discussion.

### Student Facing

1. Match each of these descriptions with a diagram:
1. the circumference, $$C$$, of a circle with radius, $$r$$
2. the distance in miles, $$d$$, that you would travel in $$t$$ hours if you drive at 60 miles per hour
3. the output when you triple the input and subtract 4
4. the volume of a cube, $$v$$ given its edge length, $$s$$
2. Write an equation for each description that expresses the output as a function of the input.
3. Find the output when the input is 5 for each equation.
4. Name the independent and dependent variables of each equation.
description            a                        b                        c                       d
diagram
equation
input = 5
output = ?
independent
variable
dependent
variable

### Student Facing

#### Are you ready for more?

Choose a 3-digit number as an input.

Apply the following rule to it, one step at a time:

• Multiply your number by 7.
• Add one to the result.
• Multiply the result by 11.
• Subtract 5 from the result.
• Multiply the result by 13
• Subtract 78 from the result to get the output.

Can you describe a simpler way to describe this rule? Why does this work?

### Activity Synthesis

The goal of this discussion is for students to describe the connections they see between the different entries for the 4 descriptions. Display the table for all to see and select different groups to share the answers for a column in the table. As groups share their answers, ask:

• “How did you know that this diagram matched with this description?” (We remembered the formula for the circumference of a circle, so we knew description A went with diagram D.)
• “Where in the equation do you see the rule that is in the diagram?” (The equation is the dependent variable set equal to the rule describing what happens to the independent variable in the diagram.)
• “Explain why you chose those quantities for your independent and dependent variables." (We know the independent variable is the input and the dependent variable is the output, so we matched them up with the input and output shown in the diagram.)
Speaking: MLR8 Discussion Supports. As students describe the connections they noticed in the table across from the different entries for the four descriptors, revoice student ideas to demonstrate mathematical language use. In addition, press for details in students’ explanations by requesting that students challenge an idea, elaborate on an idea, or give an example. This will help students to produce and make sense of the language needed to communicate their own ideas about functions and independent and dependent variables.
Design Principle(s): Support sense-making; Optimize output (for explanation)

## 3.3: Dimes and Quarters (15 minutes)

### Activity

The purpose of this activity is for students to work with a function where either variable could be the independent variable. Knowing the total value for an unknown number of dimes and quarters, students are first asked to consider if the number of dimes could be a function of the number of quarters and then asked if the reverse is also true. Since this isn't always the case when students are working with functions, the discussion should touch on reasons for choosing one variable vs. the other, which can depend on the types of questions one wants to answer.

Identify students who efficiently rewrite the original equation in the third problem and the last problem to share during the discussion.

### Launch

Arrange students in groups of 2. Give students 3–5 minutes of quiet work time followed by partner discussion for students to compare their answers and resolve any differences. Follow with a whole-class discussion.

Representation: Internalize Comprehension. Provide appropriate reading accommodations and supports to ensure students access to written directions, word problems and other text-based content.
Supports accessibility for: Language; Conceptual processing
Design Principle(s): Support sense-making

## Student Lesson Summary

### Student Facing

We can sometimes represent functions with equations. For example, the area, $$A$$, of a circle is a function of the radius, $$r$$, and we can express this with an equation: $$\displaystyle A=\pi r^2$$

We can also draw a diagram to represent this function:

In this case, we think of the radius, $$r$$, as the input, and the area of the circle, $$A$$, as the output. For example, if the input is a radius of 10 cm, then the output is an area of $$100\pi$$ cm2, or about 314 square cm. Because this is a function, we can find the area, $$A$$, for any given radius, $$r$$.

Since it is the input, we say that $$r$$ is the independent variable and, as the output, $$A$$ is the dependent variable.

Sometimes when we have an equation we get to choose which variable is the independent variable. For example, if we know that

$$\displaystyle 10A-4B=120$$

then we can think of $$A$$ as a function of $$B$$ and write

$$\displaystyle A=0.4B+12$$

or we can think of $$B$$ as a function of $$A$$ and write

$$\displaystyle B=2.5A-30$$