# Lesson 10

Dibujos, situaciones y diagramas, ¡oh, vaya!

## Warm-up: Observa y pregúntate: Calcetines (10 minutes)

### Narrative

The purpose of this warm-up is to elicit different strategies for counting objects arranged in groups of 2, which will be useful when students multiply by 2 in a later activity. While students may notice and wonder many things about these images, flexible ways of seeing the groups and strategies for finding the total number of objects are the important discussion points.

When students see the socks are grouped by 2 and use that to find the total, they are looking for and making use of structure (MP7).

### Launch

• Groups of 2
• Display the image.
• “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
• 1 minute: quiet think time

### Activity

• “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
• 1 minute: partner discussion
• Share and record responses.

### Student Facing

¿Qué observas? ¿Qué te preguntas?

### Activity Synthesis

• “¿Cómo se relaciona este problema con lo que sabemos sobre la multiplicación?” // “How does this problem relate to what we know about multiplication?” (There are equal groups of socks, we can say there are 6 groups of 2.)

## Activity 1: De una gráfica de dibujos con escala a un diagrama (15 minutes)

### Narrative

The purpose of this activity is for students to build on the work they have done with scaled picture graphs to use the tape diagram as a new representation of multiplication. The scale of the picture graph will be used to help students think about a category of the graph as a situation involving equal groups.

To add movement to this activity, students could find someone in the class who represented a different category than they did or represented the same category in a different way. When they find a person, they can describe what is the same and what is different about their representations.

MLR8 Discussion Supports. Synthesis: When students compare the diagram and the scaled picture graph, display sentence frames to support whole-class discussion: “_____ y _____ se parecen porque . . .” // “_____ and _____ are the same because . . .”, and “_____ y _____ son diferentes porque . . .” // “_____ and _____ are different because . . . .”

### Launch

• Groups of 2
• Display the picture graph and tape diagram.
• “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?” (The key says each square represents 2 signs. The diagram shows 3 groups of 2. I wonder whether they represent the same thing.)
• 1 minute: quiet think time
• 1 minute: partner discussion time
• “¿Cómo muestra el diagrama las señales de límite de velocidad que Elena vio camino a casa?” // “How does the diagram show the speed limit signs that Elena saw on the way home?”
• Share responses.

### Activity

• “Ahora, individualmente, representen los datos de otra categoría de la gráfica con su propio dibujo o diagrama” // “Now independently represent the data from another category in the graph with your own drawing or diagram.”
• 1-2 minutes: independent work time
• “Compartan con su compañero la forma en la que representaron los datos en su dibujo o diagrama” // “Share how you represented the data in your drawing or diagram with your partner.”
• 2–3 minutes: partner discussion
• Monitor for students who create a tape diagram to represent one of the other categories to use during the synthesis.

### Student Facing

1. ¿Cómo muestra el diagrama las señales de límite de velocidad que Elena vio camino a casa?
2. Representa los datos de otra categoría de la gráfica con tu propio dibujo o diagrama.

### Activity Synthesis

• Have students share different ways they represented a category in the graph.
• Display a student created tape diagram or make a quick sketch of one to represent the street signs Elena saw on the way home.
• “¿Cuál categoría está representada por este diagrama de cinta? ¿Cómo lo saben?” // “Which category does this tape diagram represent? How do you know?”
• “¿En qué se parece el diagrama a la gráfica de dibujos con escala?” // “How is the diagram the same as the scaled picture graph?” (Each picture and each part of the tape diagram represents 2 signs.)
• “¿En qué se diferencian el diagrama y la gráfica de dibujos con escala?” // “How is the diagram different than the scaled picture graph?” (In the graph, you have to read the key to know that each picture shows two signs. In the diagram, each part is labeled with a 2.)

## Activity 2: Clasificación de tarjetas: Grupos iguales (20 minutes)

### Narrative

The purpose of this activity is for students to connect situations involving equal groups to drawings and tape diagrams. A sorting task gives students opportunities to analyze representations, statements, and structures closely and make connections (MP2, MP7). Students explain why two cards match and have opportunities to critique and question their peers' reasoning (MP3). When explaining, students have opportunities to revise their language to make their explanations more precise and clear (MP6). After sorting and describing their sort, students notice that all of the representations reinforce the meaning of multiplication as a way to express equal groups.

Students will spend all of the next lesson working with expressions. Keep the equal groups cards for the next lesson.

Engagement: Develop Effort and Persistence. Chunk this task into more manageable parts. Give students a subset of the cards to start with and introduce the remaining cards once students have completed their initial set of matches.
Supports accessibility for: Attention, Organization

### Required Materials

Materials to Copy

• Card Sort Equal Groups, Spanish

### Required Preparation

Create a set of cards from the blackline master for each group of 2.

### Launch

• Groups of 2
• Give each group of 2 students a set of cards.
• “Este juego de tarjetas incluye dibujos, situaciones y diagramas. Tómense un momento para pensar cómo podrían asociar las tarjetas” // “This set of cards includes drawings, situations, and diagrams. Take a little time to think about how some of the cards could match.”
• 1 minute: quiet think time
• “Asocien las tarjetas según corresponda. Trabajen con su compañero para justificar su elección. Prepárense para explicar su razonamiento” // “Find the cards that match. Work with your partner to justify your choices. Be ready to explain your reasoning.”
• 5 minutes: partner work time
• Have students share the matches they made and how they know those cards go together.
• Listen for the language students use to describe their match. If students only reference the numbers that match, consider asking:
• “¿A qué se refieren cuando dicen _____?” // “What do you mean when you say _____?”
• “¿Cómo pueden usar las palabras 'grupos iguales' para explicar?” // “How could you use the words ‘equal groups’ to explain?”

### Activity

• “Ahora van a hacer un dibujo o diagrama para representar dos situaciones diferentes” // “Now you’re going to create a drawing or diagram to represent two different situations.”
• 3–5 minutes: independent work time
• Monitor for the students who draw equal groups and students who draw a tape diagram.

### Student Facing

1. Tu profesor te dará tarjetas que muestran dibujos, situaciones o diagramas. Forma grupos de tarjetas que correspondan entre sí. Prepárate para explicar tu razonamiento.

2. Haz un dibujo o diagrama para cada situación.

1. Hay 4 bolsas. En cada bolsa hay 2 fresas.

2. Hay 4 manos. En cada mano hay 5 dedos.

### Student Response

If students create representations that do not match the number of groups or size of the groups in the situations, consider asking:

• “¿Cómo representaste la situación?” // “How did you represent the situation?”
• “¿Cómo podrías mostrar los grupos que hay en la situación? ¿Cómo podrías mostrar los objetos que hay en cada grupo?” // “How could you show the groups in the situation? How could you show the objects in each group?”

### Activity Synthesis

• For each situation in the last 2 problems, display 2–3 student representations, at least one drawing of equal groups and one tape diagram. Leave them displayed.
• “¿Qué tienen en común todas estas representaciones?” // “What do all these representations have in common?” (They all show equal groups. They all have groups. Each group has the same amount.)
• “¿Dónde están las 4 bolsas y las 2 fresas en cada dibujo o diagrama?” // “Where are the 4 bags and 2 strawberries in each drawing or diagram?”
• “¿Dónde están las 4 manos y los 5 dedos en cada dibujo o diagrama?” // “Where are the 4 hands and 5 fingers in each drawing or diagram?”

## Lesson Synthesis

### Lesson Synthesis

Display the tape diagram.

“La lección de hoy fue sobre multiplicación. ¿Cómo se puede mostrar una multiplicación con un diagrama?” // “Today’s lesson was all about multiplication. How can a diagram show multiplication?” (A diagram can show multiplication because you can draw the number of groups and write how many are in each group. You can see that there are 4 parts in this diagram, so there are 4 groups and the 5 tells you there are 5 things in each group.

Display:

4 groups and 5 in each group
$$4\times5$$

“Recuerden que una expresión tiene al menos 2 números y al menos una operación matemática. Una expresión de multiplicación representa el número de grupos y el número de cosas que hay en cada grupo, en cierta situación. Por ejemplo, la expresión de multiplicación $$4\times5$$ representaría este diagrama porque tenemos 4 grupos y 5 en cada grupo” // “You may remember that an expression has at least 2 numbers and at least one math operation. A multiplication expression is how we represent the number of groups and number in each group in a situation. For example, the multiplication expression $$4\times5$$ would represent this diagram because we have 4 groups and 5 in each group.” Point to the 4 and 5 in the diagram and the expression as you explain.

“El símbolo que está en la mitad de la expresión es el símbolo de multiplicación. $$4\times5$$  se lee: ‘4 grupos de 5’” // “The symbol in the middle of the expression is the multiplication symbol. $$4\times5$$ can be read as ‘4 groups of 5.’”