# Lesson 5

Trapecios

## Warm-up: ¿Qué saben sobre los trapecios? (10 minutes)

### Narrative

The purpose of this What Do You Know About Trapezoids is for students to share what they know about and how they can represent trapezoids.

### Launch

• “¿Qué saben sobre los trapecios?” // “What do you know about trapezoids?”
• 1 minute: quiet think time

### Activity

• Record responses.

### Student Facing

¿Qué sabes sobre los trapecios?

### Activity Synthesis

• “Dibujen algunos ejemplos de trapecios” // “Draw some examples of trapezoids.”
• Invite a few students to share their trapezoids with the rest of the class.
• “¿Cómo saben que estos son trapecios?” // “How do you know these are trapezoids?” (They have one pair of parallel sides or they have at least one pair of parallel sides.)

## Activity 1: ¿Qué es un trapecio? (20 minutes)

### Narrative

The purpose of this activity is for students to define a trapezoid and to explore two definitions for a trapezoid. The exclusive definition of a trapezoid states that a trapezoid has exactly one pair of opposite sides that are parallel. The inclusive definition states that a trapezoid has at least one pair of opposite sides that are parallel. Students choose whichever one makes sense to them and look at a parallelogram through the lens of that definition. In the synthesis, students see how the different definitions impact how a trapezoid fits into the hierarchy of quadrilaterals (MP7). This activity also gives students a chance to plot and label coordinates on the coordinate grid.

### Launch

• Display:
• “Algunos paralelogramos son rectángulos” // “Some parallelograms are rectangles.”
• “¿Es cada afirmación verdadera o falsa?” // “Is each statement true or false?” (I think that a parallelogram can be a rectangle but it does not have to be a square.)
• 1 minute: partner discussion

### Activity

• Groups of 2
• 5 minutes: independent work time
• 5 minutes: partner work time
• Monitor for students who:
• draw an isosceles trapezoid
• draw a non-isosceles trapezoid

### Student Facing

1. Dibuja un trapecio. Marca las coordenadas de los puntos que usaste en la cuadrícula.

2. ¿Tu figura es un cuadrado?, ¿un rectángulo?, ¿un rombo?, ¿un paralelogramo? Explica tu razonamiento.
3. Describe un trapecio con tus propias palabras. Compara tu definición con la de un compañero.
4. Según tu definición, ¿esta figura es un trapecio? Explica tu razonamiento.

### Student Response

If a student does not recognize whether their trapezoid is a square, rectangle, or rhombus, co-create an anchor chart with examples and characteristics of these shapes.

### Activity Synthesis

• Display: isosceles trapezoid and non-isosceles trapezoid from student solution or use student work
• “¿En qué se parecen estas dos figuras? ¿En qué son diferentes?” // “How are these two shapes the same? How are they different?” (They both have a pair of parallel sides. One has a pair of equal sides. The other one does not.)
• Display parallelogram from the last problem in student workbook and this text:

“Un trapecio . . .” //  “A trapezoid . . .”

“. . . tiene exactamente un par de lados opuestos paralelos” //   “. . . has exactly one pair of opposite sides parallel.”

“. . . tiene al menos un par de lados opuestos paralelos” //   “. . . has at least one pair of opposite sides parallel.”

• “¿Según cuál definición esta figura es un trapecio? ¿Por qué?” // “According to which definition is this shape a trapezoid? Why?” (the second definition because it has 2 pairs of parallel sides)
• “Vamos a seguir explorando estas dos definiciones en la próxima actividad” // “We’ll continue to explore these two definitions further in the next activity.”

## Activity 2: Dos definiciones de un trapecio (15 minutes)

### Narrative

The purpose of this activity is to further explore the two definitions of trapezoids and the hierarchy of quadrilaterals. Students evaluate different statements relating trapezoids and parallelograms deciding whether they are true or false with each definition. The activity synthesis establishes the convention for these materials that a trapezoid is a quadrilateral with at least one pair of parallel sides. As students discuss and justify their decisions, they reason clearly using the 2 definitions of trapezoid (MP6).

MLR8 Discussion Supports. Prior to solving the problems, invite students to make sense of the situations and take turns sharing their understanding with their partner. Listen for and clarify any questions about the context.
Engagement: Provide Access by Recruiting Interest. Synthesis: Optimize meaning and value. Invite students to share the meaning of a trapezoid and the similarities and differences in the two definitions of a trapezoid with a classmate who missed the lesson.
Supports accessibility for: Conceptual Processing; Language

### Launch

• Groups of 2.
• Display 2 Venn diagrams for parallelograms and trapezoids.
• “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?” (One diagram shows parallelograms are part of trapezoids and the other one shows there is no overlap.)
• 1 minute: partner discussion

### Activity

• 5 minutes: independent work time
• 5 minutes: partner work time
• Monitor for students who:
• can articulate the differences between the two definitions
• draw examples of shapes to help evaluate each statement
• accurately explain the difference between the two definitions

### Student Facing

Definición 1

Definición 2

Un trapecio tiene exactamente un par de lados opuestos que son paralelos.

Un trapecio tiene al menos un par de lados opuestos que son paralelos.

¿Cuáles afirmaciones son verdaderas si usamos la primera definición? ¿Cuáles afirmaciones son verdaderas si usamos la segunda definición? Explica o muestra cómo razonaste.

1. Todos los paralelogramos son trapecios.
2. Ningún paralelogramo es un trapecio.
3. Todos los trapecios son paralelogramos.
4. Algunos trapecios son paralelogramos.
5. Ningún trapecio es un paralelogramo.

### Student Response

If students do not sort the statements correctly, suggest they sort the shape cards from an earlier lesson according to the two definitions. Then show them one statement at a time and ask, “¿Es esta afirmación verdadera para todas las figuras de alguno de estos grupos?” // “Is this statement true of all the shapes in one of these groups?”

### Activity Synthesis

• Invite previously selected students to share.
• “Algunas personas usaron la primera definición del trapecio. De ahora en adelante, vamos a usar la segunda definición” // “Some people use the first definition of the trapezoid. We will be using the second definition.”
• Display Venn diagrams from student workbook.
• “¿Qué significa cada diagrama?” // “What does each diagram mean?” (Definition 2 shows that a parallelogram is a trapezoid but a trapezoid doesn’t have to be a parallelogram. Definition 1 shows that trapezoids and parallelograms are distinct: a parallelogram can't be a trapezoid and a trapezoid can't be a parallelogram.)
• “¿Cuál diagrama corresponde a la definición del trapecio que vamos a usar?” // “Which diagram matches the definition of trapezoid we will use?” (The one on the right, Definition 2, because if a shape is a parallelogram it is also a trapezoid, but if a shape is a trapezoid, it doesn’t have to be a parallelogram.)
• Consider asking students to draw:
• A trapezoid that is also a parallelogram.
• A trapezoid that is not a parallelogram.

## Lesson Synthesis

### Lesson Synthesis

“Hoy vimos 2 definiciones distintas de un trapecio” // “Today we looked at 2 different definitions for a trapezoid.”

“¿Qué saben sobre los trapecios ahora?” // “What do you know about trapezoids now?” (A trapezoid is a quadrilateral and has at least one pair of parallel sides. If a shape is a parallelogram, it is also a trapezoid.)

Draw or display shapes like these:

“¿Cuáles de estas figuras son trapecios? ¿Cómo lo saben?” // “Which of these shapes are trapezoids? How do you know?” (B, C, and D are trapezoids because they each have at least one pair of parallel sides.)

Display or draw a Venn diagram like the one below. Save the diagram to refer back to it in future lessons.

“¿En qué lugar del diagrama irían estas figuras?” // “Where would these shapes go in the diagram?”

Draw the shapes as students share.