Lesson 12

Representemos la división de fracciones unitarias entre números enteros

Warm-up: Exploración de estimación: ¿Cuánto está sombreado? (10 minutes)

Narrative

The purpose of this Estimation Exploration is for students to think about dividing a unit fraction into smaller pieces. In the lesson, students will be given extra information so they can determine the exact size of shaded regions like the one presented here. 

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su pareja cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

¿Cuánto está sombreado?
Diagram. 4 equal sized parts. About 1 fifth of 1 part shaded. Total length, 1.
Escribe una estimación que sea:
muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display the image:
    Diagram
  • “¿En qué se parecen el diagrama de cinta y este diagrama de área? ¿En qué son diferentes?” // “How is the tape diagram the same as this area diagram? How is it different?” (Both diagrams show \(\frac{1}{4}\) of the whole and then a piece of that \(\frac{1}{4}\) is shaded. The tape diagram is long and narrow and the shaded piece is an entire vertical slice. The shaded piece in the area diagram is cut horizontally.)

Activity 1: Diagramas, ecuaciones, situaciones (10 minutes)

Narrative

In this activity, students interpret division of a unit fraction by a whole number using tape diagrams. In future lessons, students use tape diagrams to understand division of a whole number by a unit fraction. The first two activities are structured so students attend to the structure of the tape diagram and recognize how it can be used to show both a fractional part of a whole being divided into a whole number of pieces and also the size of each resulting piece in relation to the whole. The third activity provides an opportunity for students to begin to notice structure in equations when dividing a fraction by a whole number. 

Launch

  • Groups of 2

Activity

  • Monitor for students who:
    • can explain how Mai’s diagram shows \(\frac {1}{3}\) divided into 4 equal pieces.
    • can explain how Priya’s diagram shows that the size of each piece is \(\frac {1}{12}\).

Student Facing

Priya y Mai usaron estos diagramas para encontrar el valor de \(\frac{1}{3} \div 4\).

Diagrama de Priya:

Diagram. 12 equal parts. 1 part shaded. Total length, 1.

Diagrama de Mai:

Diagram. 3 equal parts. 1 of the 3 parts partitioned into 4 equal parts with 1 shaded. Total length, 1.
  1. ¿En qué se parecen los diagramas?
  2. ¿En qué son diferentes?
  3. Encuentra el valor que hace que la ecuación sea verdadera.

    \(\frac {1}{3} \div 4 =\underline{\hspace{1 cm}}\)

  4. Han dibujó este diagrama para representar \(\frac{1}{3} \div 3\). Explica cómo el diagrama muestra \(\frac{1}{3} \div 3\).

    Diagram. 9 equal parts. 1 part shaded. Total length, 1.
  5. Encuentra el valor que hace que la ecuación sea verdadera. Explica o muestra cómo razonaste.

    \(\frac {1}{3} \div 3 = \underline{\hspace{1 cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not explain how Priya’s diagrams represent the expression \(\frac{1}{3} \div 4\), suggest they draw their own diagram to represent the expression and ask, “¿En qué se parecen y en qué son diferentes tu diagrama y el diagrama de Priya?” // “How is your diagram the same and different from Priya’s diagram?”

Activity Synthesis

  • Ask previously selected students to share how Priya and Mai’s diagrams are the same and how they are different.
  • Display the diagrams that Priya and Mai drew and this equation: \(\frac {1}{3} \div 4 = \frac {1}{12}\)
  • “¿Cómo se muestra \(\frac {1}{12}\) en el diagrama de Priya?” // “How does Priya’s diagram show \(\frac {1}{12}\)?” (It is the shaded part. We know it is \(\frac {1}{12}\) of the whole because Priya divided all the thirds into 4 pieces.)

Activity 2: El trabajo de Priya (10 minutes)

Narrative

In the previous activity, students explained how tape diagrams represent equations and they used diagrams to find the value of division expressions. In this activity, students examine a mistake in order to recognize the relationship between the number of pieces the fraction is being divided into and the size of the resulting pieces. When students decide whether or not they agree with Priya’s work and explain their reasoning, they critique the reasoning of others (MP3).

This activity uses MLR3 Collect and Display. Advances: Reading, Writing, Representing.

Launch

  • Groups of 2

Activity

  • 5 minutes: independent work time
  • 3 minutes: partner discussion

Student Facing

  1. Encuentra el valor de \(\frac {1}{3} \div 2\). Explica o muestra cómo razonaste.
  2. Este fue lo que hizo Priya para encontrar el valor de \(\frac {1}{3} \div 2\):

    Diagram. 3 equal parts. 1 part divided into 2 equal sized parts, 1 part shaded. Total length, 1.

    \(\frac {1}{3} \div 2 = \frac {1}{2}\) porque dividí \(\frac {1}{3}\) en 2 partes iguales y está sombreado \(\frac {1}{2}\) de \(\frac {1}{3}\).

    1. ¿Qué preguntas tienes para Priya?
    2. La ecuación de Priya es incorrecta. ¿Cómo puede Priya ajustar su explicación?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not find the correct value of \(\frac{1}{3} \div 2\), prompt them to draw a diagram to represent the expression.

Activity Synthesis

MLR3 Clarify, Critique, Correct
  • Display the following partially correct answer and explanation:
    Diagram. 3 equal parts. 1 part partitioned into 2 equal parts with 1 shaded. Total length, 1.
    \(\frac {1}{3} \div 2 = \frac {1}{2}\) because that is how much is shaded in.
  • Read the explanation aloud.
  • “¿Qué creen que Priya quiere decir?” // “What do you think Priya means?” (She shaded in \(\frac {1}{2}\) of \(\frac {1}{3}\).)
  • “¿Hay algo que no esté claro?” // “Is anything unclear?” (If you divide \(\frac {1}{3}\) into 2 pieces, the answer will be smaller than \(\frac {1}{3}\) and \(\frac {1}{2}\) is larger than \(\frac {1}{3}\).)
  • “¿Hay algún error?” // “Are there any mistakes?” (The equation should be \(\frac {1}{3} \div 2 = \frac {1}{6}\).)
  • 1 minute: quiet think time
  • 2 minutes: partner discussion
  • “Con su compañero, escriban una explicación ajustada” // “With your partner, work together to write a revised explanation.”
  • Display and review the following criteria:
    • explanation for each step
    • correct solution
    • labeled diagram
  • 3–5 minutes: partner work time
  • Select 1–2 groups to share their revised explanation with the class. Record responses as students share.
  • “¿En qué se parecen y en qué son diferentes las explicaciones?” // “What is the same and different about the explanations?”
  • Display a revised diagram for Priya’s work or use the one from student responses.
  • “¿Dónde vemos \(\frac {1}{3} \div 2\)?” // “Where do we see \(\frac {1}{3} \div 2\)?” (The shaded section shows one of the pieces if you divide \(\frac {1}{3}\) into 2 equal pieces.)
  • “¿Dónde vemos \(\frac {1}{2} \times \frac {1}{3}\)?” // “Where do we see \(\frac {1}{2} \times \frac {1}{3}\)?” (The shaded section also shows \(\frac {1}{2}\) of \(\frac {1}{3}\).)
  • “¿Qué fracción del diagrama completo está sombreada?” // “What fraction of the whole diagram is shaded in?” (\(\frac {1}{6}\))
  • Display: \(\frac {1}{3} \div 2 = \frac {1}{3} \times \frac {1}{2}\)
  • “¿Cómo sabemos que esto es verdadero?” // “How do we know this is true?” (We can see both expressions in the diagram and they are both equal to \(\frac {1}{6}\).)

Activity 3: Busquemos patrones (15 minutes)

Narrative

In this activity, students notice as the divisor increases for a given dividend, the quotient gets smaller. Students may recognize and explain the relationship between multiplication and division. For example, they may notice that dividing one quarter into two equal pieces is the same as finding the product of \(\frac{1}{2}\times\frac{1}{4}\) . This relationship is not explicitly brought up in the synthesis, but if students describe this relationship, connect it to the student work that is discussed in the synthesis, as appropriate. When students notice a pattern, they look for and express regularity in repeated reasoning (MP8).

Engagement: Provide Access by Recruiting Interest. Invite students to share a situation in their own lives that could be used to represent one of the division expressions.
Supports accessibility for: Conceptual Processing, Language, Attention

Launch

  • Groups of 2

Activity

  • 1–2 minutes: independent think time
  • 3–5 minutes: partner work time

Student Facing

  1. En cada caso, encuentra el valor que hace que la ecuación sea verdadera. Si te ayuda, usa un diagrama.

    1. \(\frac {1}{4} \div 2 = \underline{\hspace{1 cm}}\)

    2. \(\frac {1}{4} \div 3 = \underline{\hspace{1 cm}}\)

    3. \(\frac {1}{4} \div 4 = \underline{\hspace{1 cm}}\)

  2. ¿Qué patrones observas?

  3. ¿Cómo encontrarías el valor de \(\frac{1}{4}\) dividido entre cualquier número entero? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not explain how they would find the value of \(\frac{1}{4}\) divided by any whole number, prompt them to find the value of \(\frac{1}{4} \div 5\) and \(\frac{1}{4} \div 6\) and ask, “¿Qué relación hay entre el divisor y el cociente?” // “What is the relationship between the divisor and the quotient?”

Activity Synthesis

  • Display: 
    \(\frac {1}{4} \div 2 = \frac {1}{8}\)
    \(\frac {1}{4} \div 3 = \frac {1}{12}\)
    \(\frac {1}{4} \div 4 = \frac {1}{16}\)
  • “¿Qué patrones observan?” // “What patterns do you notice?” (The quotient is getting smaller. The denominator of the quotient is getting bigger. The denominator in the quotient increases by 4. The denominator in the quotient is equal to 4 times the number you are dividing by.)
  • “¿Por qué el cociente se hace más pequeño?” // “Why is the quotient getting smaller?” (Because we are dividing \(\frac {1}{4}\) into more pieces each time, so the size of each piece will be smaller.)

Lesson Synthesis

Lesson Synthesis

Display the expression, \(\frac{1}{3} \div 3\) and Han’s diagram from the lesson:

Diagram. 9 equal parts. 1 part shaded. Total length, 1.

“¿Cómo la expresión está representada por el diagrama de Han?” // “How does Han's diagram represent the expression?” (The whole diagram is divided into three equal pieces and each third is divided into three equal pieces.)

“¿Qué representa la parte sombreada del diagrama?” // “What does the shaded part of the diagram represent?” (\(\frac{1}{9}\) of the whole.)

Cool-down: Evalúa expresiones de división (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.