Lesson 18
Representemos situaciones con la multiplicación y la división
Warm-up: Conversación numérica: Tres y un décimo (10 minutes)
Narrative
This Number Talk encourages students to think about multiplication and division involving a whole number and unit fraction. While the order of the factors does not matter for multiplication, as seen in the first two expressions, it does matter for division, as seen in the second pair of expressions. Monitor for students who find the value of the two division expressions using multiplication since the relationship between multiplication and division is the focus of this lesson.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(3 \times \frac{1}{10}\)
- \(\frac{1}{10} \times 3\)
- \(\frac{1}{10} \div 3\)
- \(3 \div \frac{1}{10}\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
“¿Cómo encontraron el valor de \(3 \div \frac{1}{10}\)?” // “How did you find the value of \(3 \div \frac{1}{10}\)?” (I know that there are ten \(\frac{1}{10}\)s in 1 so there are thirty \(\frac{1}{10}\)s in 3.)
Activity 1: Conectemos todo: Multiplicación y división (15 minutes)
Narrative
The purpose of this activity is for students to articulate the relationship between multiplication and division explaining how to solve two different problems using multiplication or division. Students have observed that dividing a whole number by a unit fraction gives the same result as multiplying the whole number by the denominator. They have also observed that dividing a unit fraction by a whole number gives the same result as multiplying the fraction by the unit fraction that has the whole number as a denominator. They also know from prior units and courses that the operations of multiplication and division are closely related. This activity brings these two ideas together, making explicit how one situation and one diagram modeling the situation can be interpreted using either multiplication or division (MP2).
Advances: Writing, Speaking, Listening
Launch
- “Vamos a resolver algunos problemas sobre una cena de barbacoa que hubo en un barrio. ¿Qué les gusta cenar durante el verano?” // “We are going to solve some problems about a neighborhood barbecue dinner. What do you like to eat for dinner in the summertime?”
Activity
- 1–2 minutes: independent think time
- 4–5 minutes: partner work time
Student Facing
-
El papá de Diego prepara hamburguesas para el pícnic. En el paquete hay 2 libras de carne de res. Se necesita \(\frac{1}{4}\) de libra para cada hamburguesa. ¿Cuántas hamburguesas se pueden preparar con la carne que hay en el paquete?
- Dibuja un diagrama que represente la situación.
- Escribe una ecuación de división que represente la situación.
- Escribe una ecuación de multiplicación que represente la situación.
-
Diego y Clare van a compartir equitativamente \(\frac{1}{4}\) de libra de ensalada de papa. ¿Cuántas libras de ensalada de papa recibirá cada persona?
- Dibuja un diagrama que represente la situación.
- Escribe una ecuación de división que represente la situación.
- Escribe una ecuación de multiplicación que represente la situación.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share their diagrams and equations for the first problem.
- “¿Cómo les ayuda el diagrama a resolver el problema?” // “How does the diagram help you solve the problem?” (The number of burgers is the number of small rectangles or \(\frac{1}{4}\)s.)
- “¿Cómo les permite el diagrama interpretar la solución usando la multiplicación?” // “How does the diagram let you interpret the solution using multiplication?” (There are 8 burgers because \(8 \times \frac{1}{4} = 2\).)
- “¿Cómo les permite el diagrama interpretar la solución usando la división?” // “How does the diagram let you interpret the solution using division?” (It shows how many \(\frac{1}{4}\)s there are in 2, 8.)
Activity 2: ¿Multiplicación o división? (20 minutes)
Narrative
The purpose of this activity is to for students to make sense of situations, make an appropriate representation in the form of multiplication or division equations, and use that representation to answer questions about the situation (MP2). Students who have a strong understanding of the relationship between division and multiplication can reason about the situations using either operation, though in some cases a representation as division goes beyond grade level which only addresses division of a whole number and a unit fraction. When partners share their work and discuss any disagreements they critique each other's reasoning (MP3).
Supports accessibility for: Attention, Organization
Launch
- Groups of 2
Activity
- 6 minutes: independent work time
- 4 minutes: partner work time
- Monitor for students who:
- Write multiple equations involving division and multiplication for the same problem.
- Use diagrams to help them write expressions or equations.
Student Facing
Considera tu grupo de problemas:
- Escribe una expresión de multiplicación o de división para cada situación.
- Responde la pregunta y escribe una ecuación. Asegúrate de incluir las unidades apropiadas. Si lo necesitas, dibuja un diagrama.
- Intercambia tu hoja de papel con la de tu compañero y revisa sus ecuaciones. Si están en desacuerdo, trabajen para llegar a un acuerdo.
Compañero A:
- La distancia desde la casa de Han hasta la casa de Priya es \(\frac{4}{5}\) de kilómetro. Han ya ha caminado \(\frac{3}{4}\) del camino. ¿Cuántos kilómetros ha caminado?
- En la clase de ciencias de Clare van a analizar unas muestras de agua. Hay \(\frac{1}{2}\) galón de agua en total y 10 grupos. Si la reparten equitativamente, ¿cuánta agua va a recibir cada grupo?
- Un recipiente que tiene 3 kilogramos de fresas está \(\frac{1}{5}\) lleno. ¿Cuántos kilogramos le caben al recipiente?
Compañero B:
- Han se demora 4 minutos en caminar \(\frac{1}{3}\) de kilómetro. ¿Cuántos minutos se demorará en caminar 1 kilómetro?
- La meta de Clare era recolectar 4 kilogramos de muestras de tierra para su proyecto de ciencias. Ella recolectó \(2 \frac{2}{3}\) veces su meta. ¿Cuántos kilogramos de tierra recolectó Clare?
- Un recipiente al que le cabe \(\frac{1}{2}\) libra de fresas está \(\frac{3}{5}\) lleno. ¿Cuántas libras de fresas hay en el recipiente?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students are not familiar with the measurement contexts in the situations, incorporate a launch that recalls the sizes of measurements such as kilograms, pounds, gallons, and kilometers. For example, describe a landmark that is 1 kilometer from the school or show students a container that has about \(\frac{1}{2}\) pound of strawberries in it.
Activity Synthesis
- “¿Cómo supieron cuál operación necesitaban hacer para encontrar la respuesta?” // “How did you know what operation you needed to perform to find the answer?” (I drew a diagram to help me visualize the situation.)
- “¿Para cuáles problemas fue difícil saber cuál operación usar?” // “For which problems was it difficult to tell what operation to use?” (I wasn’t sure what to do with the strawberry problem.)
- For students who used a diagram, “¿Cómo les ayudó dibujar el diagrama a escribir una ecuación?” // “How did drawing the diagram help you write an equation?” (It helped me see what operation could be used to solve the problem and see the result.)
- Point out equations that correctly represent the same problem (and are thus equivalent) but are expressed differently by displaying the problem about water and the equation: \(\frac{1}{2} \div 10 = \frac{1}{20}\).
- “Varios de ustedes escribieron una ecuación de división para representar este problema. ¿Qué ecuación de multiplicación puede representar este problema?” // “Many of you wrote a division equation to represent this problem. What multiplication equation can represent this problem?” (\(10 \times \frac{1}{20} = \frac{1}{2}\))
Lesson Synthesis
Lesson Synthesis
“¿Qué sabemos sobre la relación que hay entre la multiplicación y la división?” // “What do we know about the relationship between multiplication and division?” (I can often use multiplication to solve a division problem. To find \(56 \div 4\) I need to find how many 4s there are in 56 and I can do that with multiplication, first taking 10 of them and then 4 more. Or to find \(3 \div \frac{1}{8}\) I can say there are 8 \(\frac{1}{8}\)s in each whole and then multiply that by 3.)
Create an anchor chart to record student thinking including examples and diagrams.
Cool-down: Diagramas y ecuaciones (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.