Lesson 19

Juegos con fracciones

Warm-up: Exploración de estimación: Multipliquemos fracciones (10 minutes)

Narrative

The purpose of this Estimation Exploration is for students to develop strategies for finding the product of a fraction and a mixed number. Since \(2 \frac{8}{9}\) is so close to 3, a good estimate is \(3 \times 28\) or 84. Students may refine this estimate using the distributive property 

\(\begin{array} 28 \times 2\frac{8}{9} &=& 28 \times \left(3 - \frac{1}{9}\right)\\ &=& 28 \times 3 - 28 \times \frac{1}{9} \end{array} \)

Since \(\frac{28}{9}\) is about 3, \(84 - 3\) or 81 is a very good estimate. Students will use these ideas in the lesson when they find products of fractions, whole numbers, and mixed numbers.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”

Activity

  • 1 minute: quiet think time
  • 1 minute: partner discussion
  • Record responses.

Student Facing

\(28 \times 2 \frac{8}{9}\)

Escribe una estimación que sea:  

muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿En qué se parecen y en qué se diferencian \(28 \times 2\frac{8}{9}\) y \(28 \times 2\)? ¿Cómo lo saben?” // “How does \(28 \times 2\frac{8}{9}\) compare to \(28 \times 2\)? How do you know?” (It’s larger because \(2 \frac{8}{9}\) is greater than 2.)
  • “¿Por qué \(28 \times 3\) es una buena estimación?” // “Why is \(28 \times 3\) a good estimate?” (Because \(2\frac{8}{9}\) is really close to 3.)
  • “¿\(28 \times 2\frac{8}{9}\) es mayor o menor que \(28 \times 3\)? ¿Cómo lo saben?” // “Is \(28 \times 2\frac{8}{9}\) greater or less than \(28 \times 3\)? How do you know?” (Less because \(2\frac{8}{9}\) is less than 3.)
Optional: Reveal the actual value, \(80\frac{8}{9}\), and add it to the display.

Activity 1: El producto o el cociente más grande (20 minutes)

Narrative

The purpose of this activity is for students to apply what they have learned about multiplication and division of fractions to strategically write expressions with the greatest value. Students notice and explain patterns (MP7) such as:

  • To make a product as large as possible, the two factors should be chosen as large as possible.
  • To make a quotient or fraction as large as possible, the dividend should be as large as possible and the divisor as small as possible.
MLR8 Discussion Supports. Synthesis: Before inviting students to share their strategies for making the expression as large as possible, give groups time to rehearse what they might say if selected.
Advances: Speaking
Engagement: Provide Access by Recruiting Interest. Synthesis: Invite students to generate a list of additional examples of problems that can be solved using multiplication or division that connect to their personal backgrounds and interests.
Supports accessibility for: Attention, Conceptual Processing

Launch

  • Groups of 2

Activity

  • 15 minutes: partner work time
  • Monitor for students who reason about the size of the product or quotient based on the location of the digits.

Student Facing

En cada expresión, decide con tu compañero cuál es el producto o el cociente más grande que puedes formar con los números 1, 2, 3, 4, 5 y 6. Solo puedes usar cada número una vez en cada expresión. Explica o muestra cómo razonaste.

  1. \(\frac{\boxed{\phantom{\frac{000}{00}}}}{\boxed{\phantom{\frac{000}{000}}}}\times\frac{\boxed{\phantom{\frac{000}{00}}}}{\boxed{\phantom{\frac{00}{000}}}}\)
  2. \(\boxed{\phantom{\frac{000}{0}}} \div\frac{1}{\boxed{\phantom{\frac{0000}{0}}}}\)
  3. \(\frac{1}{\boxed{\phantom{\frac{0000}{0}}}}\div\boxed{\phantom{\frac{0000}{0}}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite previously selected students to share their responses.
  • Display the second expression.
  • Invite students to share their strategies for making the expression as large as possible.
  • “¿Por qué \(6 \div \frac{1}{5}\) es una buena opción para lograr que esta expresión sea lo más grande posible?” // “Why is \(6 \div \frac{1}{5}\) a good choice for making this expression as large as possible?” (When I find the value I am multiplying 6 and 5. Those are the two biggest numbers so I know that will give me the biggest value.)
  • “¿Hay alguna otra opción para escribir en los espacios en blanco con la que se obtenga el mismo valor?” // “Is there another choice for filling in the blanks that gives the same value?” (Yes, I can also do \(5 \div \frac{1}{6}\).)

Activity 2: El producto o el cociente más pequeño (15 minutes)

Narrative

In the previous activity, students chose digits to create expressions whose value was as large as possible. The purpose of this activity is for students to create expressions with the smallest possible value. The expressions and digits that students use are the same so the patterns that they identified in the previous activity will apply here as well but they lead to a different choice of expressions.

Launch

  • Groups of 2

Activity

  • 7–8 minutes: independent work time
  • 2–3 minutes: partner work time
  • Monitor for students who reason about the size of the product or quotient based on the location of the digits.

Student Facing

En cada expresión, decide con tu compañero cuál es el producto o el cociente más pequeño que puedes formar con los números 1, 2, 3, 4, 5 y 6. Solo puedes usar cada número una vez en cada expresión. Explica o muestra cómo razonaste.

  1. \(\frac{\boxed{\phantom{\frac{000}{00}}}}{\boxed{\phantom{\frac{000}{000}}}}\times\frac{\boxed{\phantom{\frac{000}{00}}}}{\boxed{\phantom{\frac{00}{000}}}}\)
  2. \(\boxed{\phantom{\frac{000}{0}}} \div\frac{1}{\boxed{\phantom{\frac{0000}{0}}}}\)
  3. \(\frac{1}{\boxed{\phantom{\frac{0000}{0}}}}\div\boxed{\phantom{\frac{0000}{0}}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display the last expression.
  • “¿Por qué \(\frac{1}{6}\div 5\) es una buena opción para lograr que la expresión sea lo más pequeña posible?” // “Why is \(\frac{1}{6}\div 5\) a good choice for making the expression as small as possible?” (The numerator is 1 so I want the denominator to be as large as possible. That’s why putting in the 6 and 5 is a good strategy.)
  • “¿Hay alguna otra opción para escribir en los espacios en blanco con la que se obtenga el mismo valor?” // “Is there another choice for filling in the blanks that gives the same value?” (Yes, I can also do \(\frac{1}{5} \div 6\).)
  • “¿Cuál es el valor de \(\frac{1}{6} \div 5\) y de \(\frac{1}{5} \div 6\)? ¿Cómo lo saben?” // “What is the value of \(\frac{1}{6} \div 5\) and \(\frac{1}{5} \div 6\) ? How do you know?” (\(\frac{1}{30}\) because I am either cutting \(\frac{1}{6}\) into 5 equal pieces or \(\frac {1}{5}\) into 6 equal pieces. Either way there are \(6 \times 5\) or 30 of those pieces in a whole.)

Lesson Synthesis

Lesson Synthesis

“Hoy vimos el valor de diferentes expresiones de multiplicación y de división que tenían fracciones unitarias” // “Today we looked at the value of different multiplication and division expressions involving unit fractions.”

Display the first expressions from the two activities.

“¿Qué números harán que el valor de esta expresión sea lo más grande posible?” // “What numbers will make the value of this expression as large as possible?” (I use the 5 and 6 for the numerators and the 1 and 2 for the denominators.)

“¿Qué números harán que sea lo más pequeña posible?” // “What numbers will make it as small as possible?” (I use the 1 and 2 for the numerators and the 5 and 6 for denominators.)

“¿En qué se parecen las expresiones que escribimos para el valor más grande y para el más pequeño? ¿En qué son diferentes?” // “How are the expressions we wrote for the largest and smallest values the same? How are they different?” (They use the same numbers but they are in the numerator in one expression and in the denominator in the other.)

Cool-down: Llena los espacios en blanco (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

Usamos la relación que hay entre la multiplicación y la división para escribir ecuaciones de multiplicación y de división que representan la misma situación. Por ejemplo, en el paquete hay 2 libras de carne. Para cada hamburguesa se necesita \(\frac{1}{4}\) de libra. ¿Cuántas hamburguesas se pueden preparar con la carne que hay en el paquete? Podemos escribir \(2\div\frac{1}{4}=8\) y \(8\times\frac{1}{4}=2\) para representar la situación.

También escribimos ecuaciones de multiplicación y de división que representan el mismo diagrama. Por ejemplo:

Diagram. 6 equal parts each labeled 1 third. Total length, 2.
Podemos escribir \(6 \times \frac{1}{3} = 2\) porque el diagrama muestra 6 grupos de \(\frac{1}{3}\) y el valor total es 2. También podemos escribir \(2 \div \frac{1}{3} = 6\) porque el diagrama muestra que el número de grupos de \(\frac{1}{3}\) que hay en 2 es 6.