Lesson 4
Situaciones acerca de la multiplicación de fracciones
Warm-up: Conversación numérica: Encontremos más mitades (10 minutes)
Narrative
The purpose of this Number Talk is for students to demonstrate strategies and understandings they have for multiplying unit fractions. These understandings help students develop fluency and will be helpful later in this lesson when students make sense of a unit fraction multiplied by a non-unit fraction.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(\frac{1}{2} \times \frac{1}{2}\)
- \(\frac{1}{3} \times \frac{1}{2}\)
- \(\frac{1}{4} \times \frac{1}{2}\)
- \(\frac{1}{5} \times \frac{1}{2}\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué patrones observan?” // “What patterns do you notice?” (The numerators are all 1. The denominators are all even numbers. The fractions are getting smaller. Each time, we find a smaller fraction of \(\frac {1}{2}\).)
Activity 1: El parque (20 minutes)
Narrative
The purpose of this activity is for students to draw a diagram representing the product of a unit fraction and a non-unit fraction. Then students use the diagram to represent the product with an expression and find its value. Students may draw many different diagrams that represent the situation. The context of sports fields was chosen to encourage students to divide the square in thirds, vertically or horizontally and, subsequently, to divide the two thirds that represents the sports in half, horizontally or vertically, to represent the part of the sports section that will be used for soccer fields. The activity synthesis focuses on the expressions and equations that represent the area for the soccer fields. Students reason abstractly and quantitatively throughout as they relate their diagram and the expression representing it to the park (MP2).
Advances: Speaking, Conversing, Representing
Launch
- Groups of 2
-
“¿Qué tipos de cosas observan y qué cosas hacen en el parque?” // “What kinds of things do you see and do in the park?”
- play frisbee or other games
- watch the ducks
- use the swings
- have a picnic
- play with my friends
- 1–2 minutes: independent think time
- 1–2 minutes: partner discussion
Activity
- 5 minutes: partner work time
- Monitor for students who label the diagram to show the different parts of the park.
Student Facing
Una ciudad está diseñando un parque sobre un terreno rectangular. \(\frac{2}{3}\) del parque se usarán para distintos deportes. \(\frac{1}{2}\) del terreno separado para deportes será destinado a campos de fútbol.
- Dibuja un diagrama de la situación.
- Escribe una expresión de multiplicación para representar la fracción de la sección de deportes que se destinará a campos de fútbol.
- ¿Qué fracción del parque entero será usada para campos de fútbol? Explica o muestra tu razonamiento.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not draw a diagram that represents \(\frac{1}{2} \times \frac{2}{3}\), suggest they draw a diagram to represent the \(\frac{2}{3}\) of the park that will be used for different sports. Ask: “¿Cómo puedes ajustar tu diagrama para mostrar que en \(\frac{1}{2}\) de la sección destinada a deportes se harán campos de fútbol?” // “How can you adapt your diagram to show that \(\frac{1}{2}\) of the section used for sports will be soccer fields?”
Activity Synthesis
- Invite students to share their drawings of the soccer fields.
- Display the image from the student solution or use a student-generated image.
- “¿De qué manera el diagrama representa \(\frac{2}{3}\)?” // “How does the diagram represent \(\frac{2}{3}\)?” (There are two vertical slices of the park on the left that are \(\frac{2}{3}\) of the park.)
- Display expression: \(\frac{1}{2} \times \frac{2}{3}\)
- “¿De qué manera el diagrama representa \(\frac{1}{2} \times \frac{2}{3}\)?” // “How does the diagram represent \(\frac{1}{2} \times \frac{2}{3}\) ?” (The top half of the left \(\frac{2}{3}\) of the square is shaded darkly.)
- “¿De qué manera el diagrama representa cuánto del parque entero será usado para campos de fútbol, que es también el valor de \(\frac{1}{2} \times \frac{2}{3}\)?” // “How does the diagram represent how much of the whole park will be used for soccer fields, which is also the value of \(\frac{1}{2} \times \frac{2}{3}\)?” (It shows 2 pieces that are each \(\frac{1}{6}\) of the whole.)
Activity 2: Otro parque (15 minutes)
Narrative
The purpose of this activity is for students to relate expressions to a diagram in a situation where they represent the product of a unit fraction and a non-unit fraction. Students work with a diagram that represents a different park. Students write expressions, trade with a partner, and interpret their partner’s expressions and match them to a diagram. As students work together, listen for how they explain why the expressions represent the corresponding areas. While the activity focuses on relating expressions and parts of the diagram, in the synthesis students find the value of products and analyze equations in terms of the park (MP2). As students discuss and justify their decisions while looking through each others’ work, they share mathematical claims and the thinking behind them (MP3).
Supports accessibility for: Memory, Organization
Launch
- Groups of 2
Activity
- 5–6 minutes: independent think time
- 2–3 minutes: partner work time
- Monitor for students who:
- can explain why \(\frac{1}{5} \times \frac{1}{2}\) represents the part of the park for the swings.
- can explain why \(\frac{3}{5} \times \frac{1}{2}\) represents the part of the park for the grass.
- write \(\frac{4}{5} \times \frac{1}{2}\) to represents the part of the park for the pond.
Student Facing
- ¿Cuál parte del parque se puede representar con la expresión \(\frac{3}{5} \times \frac{1}{2}\)? Explica o muestra tu razonamiento.
- Escoge otra parte del parque y escribe una expresión de multiplicación para la fracción del parque que esa parte representa.
- Intercambia expresiones con tu compañero y descubre cuál parte del parque representa su expresión. Prepárate para explicar tu razonamiento.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not identify which section is \(\frac{3}{5}\) of \(\frac{1}{2}\) of the park, suggest they draw a separate diagram to represent each section. Ask: “¿Cómo describirías esta sección con relación al parque entero? ¿Cómo puedes representar lo que describiste con una expresión de multiplicación?” // “How would you describe this section in relation to the whole park? How can you represent what you described with a multiplication expression?”
Activity Synthesis
- Ask previously selected students to share their thinking.
- Display: \(\frac{1}{5} \times \frac{1}{2} = \frac {1}{10}\)
- “¿Qué parte del diagrama está representada por esta ecuación?” // “What part of the diagram does this equation represent?” (It represents the section of the park that is swings. We can see that the swings take up \(\frac{1}{5}\) of \(\frac{1}{2}\) of the park.)
- Display: \(\frac{3}{5} \times \frac{1}{2} = \frac {3}{10}\)
- “¿Qué parte del diagrama está representada por esta ecuación?” // “What part of the diagram does this equation represent?” (It represents the section of the park for grass, which is \(\frac{3}{5}\) of \(\frac{1}{2}\) of the park and it is also \(\frac{3}{10}\) of the whole park.)
- Display: \(\frac{4}{5} \times \frac{1}{2} = \frac {4}{10}\)
- “¿Qué parte del diagrama está representada por esta ecuación?” // “What part of the diagram does this equation represent?” (It represents the section of the park for the pond, which is \(\frac{4}{5}\) of \(\frac{1}{2}\) of the park and it is also \(\frac{4}{10}\) of the whole park.)
Lesson Synthesis
Lesson Synthesis
“Hoy representamos la multiplicación de una fracción unitaria y una fracción no unitaria usando diagramas y expresiones” // “Today we represented multiplication of a unit fraction and a non-unit fraction with diagrams and expressions.”
Display the park diagram from the last activity. Display equations:
\(\frac{1}{5}\times \frac{1}{2} = \frac{1}{10}\)
\( \)\(\frac{2}{2} \times \frac{1}{5} = \frac{2}{10}\)
\(\frac{3}{5}\times \frac{1}{2} = \frac{3}{10}\)
\(\frac{4}{5} \times \frac{1}{2} = \frac{4}{10}\)
“Descríbanle a su compañero de qué manera cada ecuación representa el diagrama del parque” // “Describe to your partner how each equation represents the diagram of the park.”
“¿Qué patrones observan en las ecuaciones?” // “What patterns do you notice in the equations?” (Each part of the park is a certain amount of tenths. If we multiply the numerators, we get the numerator in the product. If we multiply the denominators, we get the denominator in the product.)
Cool-down: Área del parque (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.