Lesson 16
Finding Cone Dimensions
Lesson Narrative
As they did with cylinders in a previous lesson, students in this lesson use the formula \(V=\frac13 \pi r^2 h\) to find the radius or height of a cone given its volume and the other dimension. Then they apply their understanding about the volumes of cylinders and cones to decide which popcorn container and price offers the best deal. Depending on the amount of guidance students are given, this last activity can be an opportunity to explain their reasoning and critique the reasoning of others (MP3).
Learning Goals
Teacher Facing
- Calculate the value of one dimension of a cylinder, and explain (orally and in writing) the reasoning.
- Compare volumes of a cone and cylinder in context, and justify (orally) which volume is a better value for a given price.
- Create a table of dimensions of cylinders, and describe (orally) patterns that arise.
Student Facing
Let’s figure out the dimensions of cones.
Learning Targets
Student Facing
- I can find missing information of about a cone if I know its volume and some other information.
Print Formatted Materials
Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.
Student Task Statements | docx | |
Cumulative Practice Problem Set | docx | |
Cool Down | Log In | |
Teacher Guide | Log In | |
Teacher Presentation Materials | docx |