Lesson 13

Números enteros y fracciones

Warm-up: Observa y pregúntate: Cuatro rectas numéricas (10 minutes)

Narrative

This warm-up elicits observations about the different ways whole numbers can be expressed as fractions. Students have previously seen number lines where 1, 2, and 3 were labeled with fractions in halves, thirds, fourths, sixths, and eighths. They understand that a denominator of 2 corresponds to 2 equal parts in the length representing 1 whole. The number line marked with \(\frac{1}{1}\), \(\frac{2}{1}\), and \(\frac{3}{1}\) is shown together with those marked with halves, thirds, and fourths to highlight that a denominator of 1 means each whole has 1 part.

In the synthesis, students learn that fractions with 1 as a denominator can be used to represent whole numbers (\(\frac{2}{1} = 2\)).

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

4 number lines. Evenly spaced tick marks. 0 to 3 ones by ones, 0 to 6 halves by halves, 0 to 9 thirds by thirds, 0 to 12 fourths by fourths.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué puede significar tener a 1 como denominador?” // “What could it mean to have a denominator of 1?” (The whole hasn’t been partitioned. The whole has been partitioned into 1 part.)
  • Have students label the locations of \(\frac{1}{1}\), \(\frac{2}{1}\), and \(\frac{3}{1}\) on the first number line with 1, 2, and 3.
Number line.
  • “La longitud de 0 a 1 no se ha partido, así que cada parte tiene una longitud de 1. Esto es lo que significa tener a 1 como denominador. Si tenemos 1 parte de 1, el numerador es 1. Si tenemos 2 partes de 1, el numerador es 2 y así sucesivamente” // “The length from 0 to 1 hasn’t been partitioned, so each part has a length of 1. This is what a denominator of 1 means. If we have 1 part of 1, the numerator is 1. If we have 2 parts of 1, the numerator is 2, and so on.”
  • “¿Qué otras fracciones en estas rectas numéricas podrían ser equivalentes a 1?” // “What other fractions on these number lines might be equivalent to 1?” (\(\frac{2}{2}\), \(\frac{3}{3}\), \(\frac{4}{4}\))

Activity 1: Números enteros ocultos (20 minutes)

Narrative

In an earlier lesson, students saw that whole numbers could be written as fractions. The purpose of this activity is for students to recognize fractions that are equivalent to whole numbers, using patterns in number lines to support their reasoning. To identify fractions that are equivalent to whole numbers on number lines, students may:

  • Use what they know about 2 halves, 3 thirds, and 4 fourths to identify 1, and then circle fractions at the same intervals down each number line.
  • Use what they know about 2 halves, 4 halves, and 6 halves to identify 1, 2, and 3 on the first number line, and then circle fractions in the same locations on other number lines.
  • Use the relationship between parts and wholes (for instance, 3 thirds make 1, 6 thirds make 2, and 9 thirds make 3).

Students then record equations that show fractions that are equivalent to whole numbers. Finally, given a list of fractions, students determine which ones are equivalent to whole numbers.

When students use patterns to identify fractions that are equivalent to whole numbers, they look for and express regularity in repeated reasoning (MP8).

Engagement: Provide Access by Recruiting Interest. Leverage choice around perceived challenge. Invite students to select at least 3 of the 5 problems in each question to complete.
Supports accessibility for: Organization, Attention, Social-emotional skills

Launch

  • Groups of 2
  • “Con su compañero, marquen todas las fracciones que son equivalentes a números enteros. Asegúrense de explicar su razonamiento” // “Work with your partner to circle all the fractions that are equivalent to whole numbers. Be sure to explain your reasoning.”
  • 2–3 minutes: partner work time
  • “Observen las fracciones que marcaron. ¿Cómo supieron cuáles marcar?” // “Look at the fractions you circled. How did you know which ones to circle?”
  • 1–2 minutes: partner discussion
  • Share responses.

Activity

  • “Podemos usar ecuaciones como \(\frac{4}{2}=2\) para mostrar que \(\frac{4}{2}\) y 2 están en la misma ubicación en la recta numérica, así que son equivalentes” // “We can use equations like \(\frac{4}{2}=2\) to show that \(\frac{4}{2}\) and 2 are at the same location on the number line, so they are equivalent.”
  • “Trabajen individualmente para completar el segundo y el tercer problema” // “Work independently to complete the second and third problem.”
  • 5–7 minutes: independent work time
  • “Compartan con su compañero sus soluciones del segundo y tercer problema. Asegúrense de compartir cómo razonaron” // “Share your solutions to the second and third problems with your partner. Be sure to share your reasoning.”
  • 2–3 minutes: partner discussion

Student Facing

  1. En cada recta numérica, marca las fracciones que son equivalentes a números enteros. Explica cómo lo sabes.

    Number line. Scale 0 to 6 halves by halves, evenly spaced tick marks. First tick mark, 0. Last tick mark, 6 halves.
    Number line. Scale 0 to 9 thirds by thirds, evenly spaced tick marks. First tick mark, 0. Last tick mark, 9 thirds.
    Number line. Scale 0 to 12 fourths by fourths, evenly spaced tick marks. First tick mark, 0. Last tick mark, 12 fourths.
  2. Podemos escribir \(\frac{4}{2}=2\) para mostrar que \(\frac{4}{2}\) y 2 están en la misma ubicación en la recta numérica, así que son equivalentes.

    Escribe otras 5 ecuaciones que muestren fracciones que son equivalentes a números enteros. Usa las rectas numéricas si te ayuda.

    Number line. Evenly spaced tick marks labeled 0 to 3.  First tick mark, 0. Last tick mark, 3.
    Number line. Evenly spaced tick marks labeled 0 to 3.  First tick mark, 0. Last tick mark, 3.

  3. Decide si cada fracción es equivalente a un número entero. Si te ayuda, usa rectas numéricas.

    1. \(\frac{11}{2}\)
    2. \(\frac{5}{1}\)
    3. \(\frac{12}{6}\)
    4. \(\frac{10}{3}\)
    5. \(\frac{12}{8}\)
    6. \(\frac{16}{4}\)
    Number line. Evenly spaced tick marks labeled 0 to 3.  First tick mark, 0. Last tick mark, 3.
    Number line. Evenly spaced tick marks labeled 0 to 3.  First tick mark, 0. Last tick mark, 3.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students don’t locate whole numbers on the number lines, consider asking:

  • “Cuéntame sobre las fracciones en la recta numérica” // “Tell me about the fractions on the number line.”
  • “¿Cómo puedes usar las particiones de 1 entero para encontrar las fracciones que están en la misma ubicación que 2?, ¿que 3?” // “How could you use the partitions in 1 whole to find the fractions at 2? At 3?”

Activity Synthesis

  • Invite students to share their responses and reasoning for the last set of problems.
  • As students share, record fractions that are equivalent to whole numbers as equations and highlight that equations can be written starting with the whole number or fraction (for example, \(\frac{12}{6}=2\) or \(2=\frac{12}{6}\)).
  • “¿Cómo supieron si cada fracción era equivalente a un número entero?” // “How did you know if each fraction was equivalent to a whole number?”
  • “¿Qué patrones ven que pueden ayudar a encontrar más fracciones que son números enteros?” // “What patterns do you see that could be helpful for finding more fractions that are whole numbers?”
  • Highlight strategies that are based on understanding of the number of equal parts that are in 1 whole and on observed patterns. (For instance, the thirds that are equivalent to whole numbers have a numerator that is a number we get when counting by 3.)

Activity 2: Escribámoslos como fracciones (15 minutes)

Narrative

The purpose of this activity is for students to write whole numbers as fractions. Students may reason in any way that makes sense to them, including using patterns they noticed previously. When students observe patterns as they write whole numbers as fractions, they look for and make use of structure (MP7).

This activity uses a “carousel” structure in which students complete a rotation of tasks. Consider demonstrating the steps before students begin.

MLR8 Discussion Supports. Synthesis: During group presentations, invite the student(s) who are not speaking to follow along and point to the corresponding parts of the display.
Advances: Speaking, Representing

Launch

  • Groups of 3
  • “Tómense un momento para examinar la tabla y los números que hay en ella. ¿Cómo piensan que funciona la tabla?” // “Take a moment to look at the table and the numbers in the table. How do you think the table works?”
  • 1 minute: quiet think time
  • Share responses.
  • “En su grupo, por turnos, expliquen por qué \(\frac{4}{1}\) es equivalente a 4, \(\frac{30}{6}\) es equivalente a 5 y \(\frac{48}{8}\) es equivalente a 6” // “In your group, take turns explaining why \(\frac{4}{1}\) is equivalent to 4, \(\frac{30}{6}\) is equivalent to 5, and \(\frac{48}{8}\) is equivalent to 6.”
  • 2 minutes: group discussion

Activity

  • “Trabajen en grupo para completar la tabla. Comiencen por escribir dos fracciones que sean equivalentes a cada número entero: 4, 5 y 6” // “Work with your group to complete the table. Start by writing two fractions that are equivalent to each whole number: 4, 5, and 6.”
  • 2 minutes: independent work time
  • “Pasen su hoja a su derecha. En la hoja que reciben, escriban una fracción nueva que sea equivalente a uno de los número enteros, el que elijan” // “Pass your paper to your right. On the paper your receive, write one new fraction that is equivalent to a whole number of your choice.”
  • “Sigan pasando y escribiendo una fracción adicional que sea equivalente a uno de los números enteros hasta que la tabla esté completa” // “Keep passing and writing one additional fraction for a whole number until the table is complete.”
  • Encourage students to ask clarifying questions before they begin.
  • 7–8 minutes: group work time
  • “Prepárense para explicar cómo saben qué fracciones escribir para cada número entero” // “Be prepared to explain how you know what fractions to write for each whole number.”
  • Monitor for students who:
    • use a number line (either draw a new one or extending those from an earlier activity)
    • extend a pattern they noticed in fractions that are equivalent to whole numbers
    • use multiplication facts
​​

Student Facing

Completa la tabla con tu grupo. En cada columna, escribe fracciones que sean equivalentes al número entero de la primera fila.  

  • Paso 1: Escribe dos fracciones que sean equivalentes a cada número entero (seis fracciones en total). Pasa tu hoja a tu derecha. 
  • Paso 2: Cuando recibas la hoja de tu compañero, escribe una fracción nueva que sea equivalente a uno de los números enteros.
  • Repitan el paso 2 hasta que la tabla esté completa. 
4 5 6
\(\frac{\large{4}}{\large{1}}\)
\(\frac{\phantom{\huge000}}{\large{2}}\)
\(\frac{\phantom{\huge000}}{\large{3}}\)
\(\frac{\phantom{\huge000}}{\large{4}}\)
\(\frac{\large{30}}{\large{6}}\)
\(\frac{\large{48}}{\large{8}}\)

Two students looking at an equation on chart paper.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students don’t write a whole number as a fraction, consider asking:

  • “Dime cómo escribirías 1 como una fracción” // “Tell me about how you would write 1 as a fraction.”
  • “¿Cómo puedes usar la fracción que es equivalente a 1 para escribir este número como una fracción?” // “How could you use the fraction that's equivalent to 1 to write this number as a fraction?”

Activity Synthesis

  • Invite a group of students to display their completed table.
  • Select previously identified students to share how they knew what fractions to write for each whole number.
  • Invite the class to share other strategies for generating equivalent fractions.
  • “¿Qué patrones nuevos observan en la tabla que ya completaron?” // “What new patterns do you notice in the completed table?” (Sample responses:
    • In fractions that are equivalent to 4, you can get the numerator by skip-counting by the denominator 4 times.
    • In the row with thirds, the numerator increases by 3. In the row for fourths, it increases by 4.)

Lesson Synthesis

Lesson Synthesis

“En las últimas lecciones, hemos aprendido sobre fracciones equivalentes” // “Over the last few lessons, we’ve learned about equivalent fractions.”

“¿Qué cosas importantes han aprendido sobre la equivalencia de fracciones?” // “What are some important things you’ve learned about fraction equivalence?” (Fractions that are the same size are equivalent. Fractions at the same point on the number line are equivalent. Some fractions are equivalent to whole numbers, but some are not. Whole numbers can be written as fractions.)

Cool-down: De fracción a número entero y de número entero a fracción (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección, aprendimos que fracciones que son diferentes pueden ser equivalentes. Sabemos que las fracciones son equivalentes si tienen el mismo tamaño o están ubicadas en el mismo lugar en la recta numérica.
Diagram.
Diagram.

\(\frac{1}{3} = \frac{2}{6}\)

Number line. Scale 0 to 1 by eighths and fourths. Evenly spaced tick marks. First tick mark, 0. Last tick mark, 1. Point plotted at 3 fourths.

\(\frac{6}{8} = \frac{3}{4}\)

También aprendimos que algunas fracciones son números enteros y que podemos escribir números enteros como fracciones.
Number line.

\(4 = \frac{12}{3}\)