# Lesson 4

Construyamos fracciones a partir de fracciones unitarias

## Warm-up: Conversación numérica: 3 y otro factor (10 minutes)

### Narrative

This Number Talk encourages students to look for structure in multiplication expressions and rely on properties of operations to mentally solve problems. Reasoning about products of whole numbers helps to develop students' fluency with multiplication within 100.

### Launch

• Display one expression.
• “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
• 1 minute: quiet think time

### Activity

• Keep expressions and work displayed.
• Repeat with each expression.

### Student Facing

Encuentra mentalmente el valor de cada expresión.

• $$3 \times 3$$
• $$7 \times 3$$
• $$10 \times 3$$
• $$3 \times 17$$

### Activity Synthesis

• “¿Cómo les ayudaron las primeras expresiones a encontrar el valor de la última expresión?” // “How did the earlier expressions help you find the value of the last expression?”
• “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
• “¿Alguien pensó en el problema de otra forma?” // “Did anyone approach the problem in a different way?”

## Activity 1: Conozcamos “Fracciones secretas” (20 minutes)

### Narrative

The purpose of this activity is for students to learn the Secret Fractions center and build non-unit fractions from unit fractions. Students use unit fractions to build “secret fractions,” which are non-unit fractions. For example, to complete a secret fraction card with $$\frac{3}{4}$$, students need three cards with $$\frac{1}{4}$$. After completing each secret fraction, they reveal the fraction they’ve made and shade the gameboard to represent it. The synthesis highlights strategies students used to build their non-unit fractions.

Here are the images of the cards for reference and planning:

Engagement: Develop Effort and Persistence. Check in and provide each group with feedback that encourages collaboration and community. For example, check in with partners after the second round of Secret Fractions.
Supports accessibility for: Social-Emotional Functioning

### Required Materials

Materials to Gather

Materials to Copy

• Secret Fractions Stage 1 Cards
• Secret Fractions Stage 1 Gameboard, Spanish

### Required Preparation

• Create a set of cards from the blackline master for each group of 2.
• Print extra gameboards for the launch and groups that have time for an extra game.
• Students might want a folder or divider so their partner doesn’t see their cards.

### Launch

• Groups of 2
• Give each group a set of cards and a gameboard.
• “Vamos a jugar un juego llamado ‘Fracciones secretas’. Leamos las instrucciones y juguemos 1 ronda juntos” // “We’re going to play a game called Secret Fractions. Let’s read through the directions and play 1 round together.”
• Read through the directions with the class and play a round against the class, displaying the fractions from the cards and thinking through decisions aloud.
• Show students how to place an object, such as a folder, between them to obstruct the view of the other player.
• Give each group that wants a divider a folder or other divider.

### Activity

• “Ahora jueguen ‘Fracciones secretas’ con su compañero” // “Now, play Secret Fractions with your partner.”
• 10–15 minutes: partner work time
• Monitor for students who:
• trade their secret fractions for new ones because most of their unit fractions have a different denominator
• keep track of the unit fractions they have as they try to make their non-unit fractions

### Student Facing

El objetivo del juego es ser el primero en construir 2 fracciones secretas con fracciones unitarias.

1. Forma dos pilas: una para las fracciones secretas y una para las fracciones unitarias. Ponlas boca abajo.
2. Cada jugador toma 2 tarjetas de fracciones secretas. Estas son las fracciones que vas a tratar de formar con tus fracciones unitarias.
3. En tu turno, puedes hacer una de estas jugadas:

• Tomar 1 tarjeta de fracciones unitarias.
• Intercambiar tus dos tarjetas de fracciones secretas por 2 fracciones secretas nuevas de la pila.
4. Cuando tengas suficientes fracciones unitarias para formar una de tus fracciones secretas, sombrea tu tablero para representar tu fracción secreta. Después, toma una nueva fracción secreta.
5. El primer jugador que forme 2 fracciones secretas, gana.

### Activity Synthesis

• “¿Qué estrategias les ayudaron a construir sus fracciones secretas?” // “What strategies did you find helpful for building your secret fractions?” (When $$\frac{5}{8}$$ was my secret fraction, I was keeping track of how many $$\frac{1}{8}$$ cards I had to make $$\frac{5}{8}$$. When I had $$\frac{3}{4}$$ as a secret fraction, I knew I needed $$\frac{1}{4}$$ cards, but I had a bunch of $$\frac{1}{6}$$ cards, so I traded for different secret fractions.)

## Activity 2: Representemos situaciones de fracciones (15 minutes)

### Narrative

The purpose of this activity is for students to use diagrams to represent situations that involve non-unit fractions. The synthesis focuses on how students partition and shade the diagrams and how the end of the shaded portion could represent the location of an object. When students interpret the different situations in terms of the diagrams they reason abstractly and quantitatively (MP2).

MLR8 Discussion Supports. Synthesis: During group presentations, invite student(s) who is/are not speaking to follow along and point to the corresponding parts of the display.

### Launch

• Groups of 2
• “¿Qué juegos les gusta jugar con sus amigos?” // “What are some games that you like to play with friends?”
• Share responses.
• “Pilolo es un juego popular en Ghana. Un jugador esconde palos, piedras o monedas de un centavo. Los otros jugadores tienen que encontrar uno de los objetos y ser los primeros en llegar a la línea de meta para obtener un punto. Miren la foto de unos niños que están jugando Pilolo y piensen en algunas estrategias que podrían usar si jugaran este juego” // “Pilolo is a game played in Ghana. One player hides sticks, rocks, or pennies. The other players have to find one of the objects and be the first to reach the finish line to get a point. Look at the picture of some children playing Pilolo and think about some strategies you might use if you played this game.” (I would try to hide the objects in a good hiding spot. I would run fast to be the first one to the finish line.)
• 30 seconds: quiet think time
• Share responses.
• “Vamos a representar algunas situaciones sobre estudiantes que juegan Pilolo” // “We’re going to represent some situations about students playing Pilolo.”

### Activity

• “En la actividad, cada tira representa la longitud de una calle donde juegan Pilolo” // “In the activity, each strip represents the length of a street where Pilolo is played.”
• “Individualmente, representen cada situación en un diagrama” // “Work independently to represent each situation on a diagram.”
• 3–5 minutes: independent work time
• “Con un compañero, escojan una de las situaciones y hagan un póster que muestre cómo representaron la situación con una tira de fracciones. Incluyan detalles, como notas, dibujos, marcas, etc., para ayudarle a los demás a entender cómo pensaron” // “With a partner, choose one of the situations and make a poster to show how you represented the situation with a fraction strip. You may want to include details such as notes, drawings, labels, and so on, to help others understand your thinking.”
• Give students materials for creating a visual display.
• 5–7 minutes: partner work time

### Student Facing

Estas son cuatro situaciones sobre jugar Pilolo y cuatro diagramas. Cada diagrama representa la longitud de una calle en la que se juega.

Representa cada situación con un diagrama. Prepárate para explicar tu razonamiento.

1. Un estudiante camina $$\frac{4}{8}$$ de la longitud de la calle y esconde una piedra.

2. Un estudiante camina $$\frac{2}{3}$$ de la longitud de la calle y esconde una moneda de un centavo.

3. Un estudiante camina $$\frac{3}{4}$$ de la longitud de la calle y esconde un palo.

4. Un estudiante camina $$\frac{5}{6}$$ de la longitud de la calle y esconde una moneda de un centavo.

5. Este diagrama representa la ubicación de un palo que está escondido. ¿Aproximadamente qué fracción de la longitud de la calle recorrió el estudiante para esconderlo? Prepárate para explicar cómo lo sabes.

### Student Response

If students partition into sixths or eighths by creating 6 or 8 parts, but the parts aren’t equal, consider asking:

• “¿Cómo partiste la tira en sextos?, ¿en octavos?” // “How did you partition the strip into sixths? Eighths?”
• “¿Cómo podrías usar tercios para partir en sextos? ¿Cómo podrías usar cuartos para partir en octavos?” // “How could you use thirds to partition into sixths? Use fourths to partition into eighths?”

### Activity Synthesis

• Display posters around the room.
• “Mientras observan cada póster, discutan cómo se muestra cada situación en el diagrama” // “As you look at each poster, discuss how each situation was shown on the diagram.” (The diagram was partitioned into 6 equal parts. 5 of the equal parts were shaded.)
• 2–3 minutes: partner discussion
• Share responses.
• “¿Qué parte de cada diagrama representa el lugar donde estaba escondido el objeto?” // “What part of each diagram would represent where the object was hidden?” (The end of the shaded part.)

## Lesson Synthesis

### Lesson Synthesis

Display some completed gameboards from the first activity and one of the diagrams that represents a situation from the second activity.

“¿En qué se pareció formar las fracciones en el juego a representar las situaciones? ¿En qué fue diferente?” // “How was making the fractions in the game like representing the situations? How was it different?” (The parts had to be equal-sized for both activities. We had to count the parts in both activities. The fractions were made from unit fractions. In the first activity, we had the pieces to build the fraction, but in the second activity, we had to partition and shade in the parts to make the fraction.)

“En ambas actividades pudimos ver cómo se usan las fracciones unitarias para formar otras fracciones” // “In both activities we were able to see how unit fractions are used to make other fractions.”

## Student Section Summary

### Student Facing

En esta sección, aprendimos a hacer particiones de figuras en medios, tercios, cuartos, sextos y octavos. También aprendimos a describir cada una de esas partes con palabras y con un número.

Los números que usamos para describir estas partes de igual tamaño son fracciones.

Una fracción como $$\frac{1}{4}$$ se lee “un cuarto” porque representa una de las 4 partes iguales de una unidad.

Una fracción como $$\frac{3}{4}$$ se lee “tres cuartos” porque representa 3 partes, cada una de tamaño un cuarto o $$\frac{1}{4}$$.

Las fracciones que describen solo una de las partes iguales de una unidad —como $$\frac{1}{2}$$, $$\frac{1}{3}$$, $$\frac{1}{8}$$— se llaman fracciones unitarias.

Aprendimos que el número de abajo de una fracción nos dice en cuántas partes iguales está partida la unidad. El número de arriba de la fracción nos dice cuántas partes iguales están descritas.