# Lesson 11

Generemos fracciones equivalentes

## Warm-up: Conversación numérica: Algo por 8 (10 minutes)

### Narrative

This Number Talk encourages students to look for structure in multiplication expressions and rely on properties of operations to mentally solve problems. Reasoning about products of whole numbers helps to develop students’ fluency.

### Launch

• Display one expression.
• “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
• 1 minute: quiet think time

### Activity

• Keep expressions and work displayed.
• Repeat with each expression.

### Student Facing

Encuentra mentalmente el valor de cada expresión.

• $$2 \times 8$$
• $$6 \times 8$$
• $$10 \times 8$$
• $$12 \times 8$$

### Activity Synthesis

• “¿Cómo les ayudaron las primeras expresiones a encontrar el valor de la última expresión?” // “How did the earlier expressions help you find the value of the last expression?”
• “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
• “¿Alguien pensó en el problema de otra forma?” // “Did anyone approach the problem in a different way?”

## Activity 1: Mostremos la equivalencia (20 minutes)

### Narrative

The purpose of this activity is for students to use diagrams to reason about equivalence and reinforce their awareness of the relationship between fractions that are equivalent.

Students show that a shaded diagram can represent two fractions, such as $$\frac{1}{2}$$ and $$\frac{4}{8}$$, by further partitioning given parts or composing larger parts from the given parts. Unlike with the fraction strips, where different fractional parts are shown in rows and students could point out where and how they see equivalence, here students need to make additional marks or annotations to show equivalence.

In upcoming lessons, students will extend similar strategies to reason about equivalence on a number line—by partitioning the given intervals on a number lines into smaller intervals or by composing larger intervals from the given intervals.

In the first problem, students construct a viable argument in order to convince Tyler that $$\frac{4}{8}$$ of the rectangle is shaded (MP3).

Action and Expression: Develop Expression and Communication. Synthesis: Identify connections between strategies that result in the same outcomes but use differing approaches.
Supports accessibility for: Memory, Visual-Spatial Processing

• Groups of 2

### Activity

• “Trabajen con su compañero en el primer problema. Discutan si están de acuerdo o no con Jada y muestren su razonamiento” // “Work with your partner on the first problem. Discuss whether you agree with Jada and show your reasoning.”
• 3–4 minutes: partner work time
• Pause for a brief discussion. Invite students to share their responses and reasoning.
• “Ahora, trabajen individualmente en el resto de la actividad” // “Now, work independently on the rest of the activity.”
• 5 minutes: independent work time
• Monitor for the different strategies students use to show equivalence, such as:
• drawing circles or brackets to show composing larger parts from the given parts
• drawing lines to show new partitions
• labeling parts of the fractions with two names
• drawing a new diagram with different partitions but the same shaded amount
• Identify students using different strategies to share during synthesis.

### Student Facing

1. El diagrama representa 1.​​​​​​

1. ¿Qué fracción representa la parte sombreada del diagrama?
2. Jada dice que representa $$\frac{4}{8}$$. Tyler no está seguro.

¿Estás de acuerdo con Jada? Si es así, explica o muestra cómo convencerías a Tyler de que Jada tiene razón. Si no, explica o muestra tu razonamiento.

1. Muestra que la parte sombreada de este diagrama representa tanto $$\frac{1}{3}$$ como $$\frac{2}{6}$$.

2. Muestra que la parte sombreada representa tanto $$\frac{6}{8}$$ como $$\frac{3}{4}$$.

3. Muestra que la parte sombreada representa tanto $$\frac{6}{6}$$ como $$\frac{2}{2}$$.

### Student Response

If students don’t explain how the pairs of fractions are equivalent, consider asking:

• “¿Qué significa que dos fracciones sean equivalentes?” // “What does it mean for fractions to be equivalent?”
• “¿Cómo podemos mostrar ambas fracciones para decidir si son equivalentes?” // “How could we show both fractions to determine if they are equivalent?”

### Activity Synthesis

• Select previously identified students to share their responses and reasoning. Display their work for all to see.
• As students explain, describe the strategies students use to show equivalence. Ask if others in the class showed equivalence the same way.

## Activity 2: Más de un nombre (15 minutes)

### Narrative

The purpose of this activity is for students to generate equivalent fractions, including for fractions greater than 1, given partially shaded diagrams. Student may use strategies from an earlier activity—partitioning a diagram into smaller equal parts, or making larger equal parts out of existing parts—or patterns they observed in the numerators and denominators of equivalent fractions (MP7).

MLR8 Discussion Supports. Students should take turns naming the equivalent fractions they came up with and explaining their reasoning to their partner. Display the following sentence frames for all to see: “Observé _____, entonces pensé . . .” // “I noticed _____ , so I thought . . . .” Encourage students to challenge each other when they disagree.

### Launch

• Groups of 2
• “Observen que hay un 1 debajo del diagrama. Esta es otra forma de mostrar qué parte del diagrama representa 1” // “Notice there's a 1 below the diagram. This is another way to show which part of the diagram represents 1.”
• “¿Qué fracciones pueden estar representadas por las partes sombreadas del diagrama?” //  “What fractions can the shaded parts of the diagram represent?” ($$\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}$$)

### Activity

• “Ahora escriban dos fracciones que piensen que representan las partes sombreadas de cada diagrama” // “Now write two fractions that you think represent the shaded parts of each diagram.”
• 3–5 minutes: independent work time
• “Discutan con su compañero los nombres que se les ocurrieron para cada fracción. Asegúrense de compartir cómo razonaron en el caso de cada fracción” //  “Discuss the names you came up with for each fraction with your partner. Be sure to share your reasoning for each fraction.”
• 2–3 minutes: partner discussion
• Monitor for students who make statements like:
• The first diagram is $$\frac{4}{6}$$, because 4 of the 6 equal parts are shaded. It's also $$\frac{2}{3}$$ because every 2 sixths is 1 third and there are 3 thirds. Two of the 3 thirds are shaded.
• The second diagram is $$\frac{2}{8}$$ because 2 of the 8 equal parts are shaded. It's also $$\frac{1}{4}$$ because every 2 eighths is 1 fourth, and 1 of the 4 fourths is shaded.

### Student Facing

2. Este es otro diagrama.

2. Escribe otra fracción que esté representada por esta parte.

### Student Response

If students name a fraction, based only on the given partitions, consider asking:

• “Cuéntame cómo llamaste a la fracción” // “Tell me about how you named the fraction.”
• “¿Cómo puedes usar el diagrama para encontrar otra manera de llamar a la fracción?” // “How could you use the diagram to find another way you could name the fraction?”

### Activity Synthesis

• Select students to share their strategies for writing multiple fractions for each diagram. Display the diagrams they marked or annotated.
• “¿En qué se diferenciaba el último diagrama de los tres primeros?” // “In what ways was the last diagram different than the first three?” (It shows 2 wholes. The shades parts were greater than 1.)
• “¿Su estrategia para encontrar fracciones equivalentes en este diagrama fue diferente a la que usaron en los tres primeros? ¿Por qué sí o por qué no?” // “Was your strategy for finding fractions for this diagram different from the first three? Why or why not?” (No, it still involved making smaller equal parts. Yes, I partitioned the first 1 whole and the second 1 whole separately.)
• If no students mention $$\frac{12}{8}$$ for the last diagram, ask, “¿Pueden mencionar una fracción distinta a $$\frac{3}{2}$$ y $$\frac{6}{4}$$?” // “Can you name another fraction other than $$\frac{3}{2}$$ and $$\frac{6}{4}$$?”

## Lesson Synthesis

### Lesson Synthesis

“Hoy vimos que las partes sombreadas de un diagrama pueden ser representadas por varias fracciones equivalentes” // “Today, we saw that the shaded parts of a diagram can be represented by multiple equivalent fractions.”

Display a diagram of labeled fraction strips from an earlier activity, and a couple of shaded diagrams that show equivalent fractions from this activity.

“¿Cómo usamos las tiras de fracciones como ayuda para ver fracciones equivalentes y darles un nombre?” // “How did we use the fraction strips to help us see and name equivalent fractions?” (We could see if some number of parts in one row is the same size as the parts in another row. The labels on the strips help us name the fractions that are equivalent.)

“¿Cómo nos ayudaron los diagramas sombreados de esta actividad a ver fracciones equivalentes y darles un nombre?” // “How did the shaded diagrams in this activity help us see and name equivalent fractions?” (We could either partition the diagram into smaller equal parts, or put the parts together to make larger equal parts.)