Lesson 12

Resolvamos problemas

Warm-up: Exploración de estimación: Denominadores grandes (10 minutes)

Narrative

The purpose of this estimation exploration is for students to reason about the size of a complex fraction sum with large denominators. Students can see that 1 is a good estimate because one fraction is small and the other is close to 1. In the synthesis they refine this estimate to explain why the value of the sum is a little larger than 1. 

Launch

  • Groups of 2
  • Display the expression.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high?” “Too low?” “About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

¿Cuál es el valor de la suma?

\(\frac{3}{17}+\frac{17}{19}\)

Escribe una estimación que sea:

muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo saben que la suma es mayor que 1?” // “How do you know that the sum is greater than 1?” (\(\frac{17}{19}\) is \(\frac{2}{19}\) short of a whole. Since 17ths are bigger than 19ths, adding \(\frac{3}{17}\) makes it greater than 1.)

Activity 1: El aderezo de la ensalada de Priya (20 minutes)

Narrative

The purpose of this activity is for students to add and subtract fractions and estimate sums and differences of fractions using the context of a recipe. Students may have different responses and reasoning for the estimation questions. In both cases, they can calculate and compare fractions but they may have different thoughts about how these differences would affect the recipe or what exactly it means for the recipe to make “about \(1\frac{1}{2}\) cups.” In the synthesis, students discuss the reasonableness of the estimates and how to make precise calculations (MP6). When students relate their calculations to Priya's salad dressing they reason abstractly and quantitatively (MP2).

Reading: MLR6 Three Reads. Keep books or devices closed. Display only the problem stem, without revealing the questions. “Vamos a leer este problema 3 veces” // “We are going to read this question 3 times.” After the 1st Read: “Cuéntenle a su compañero de qué se trata la situación” // “Tell your partner what this situation is about.” After the 2nd Read: “Hagan una lista de las cantidades. ¿Qué se puede contar o medir?” // “List the quantities. What can be counted or measured?” Reveal the question(s). After the 3rd Read: “¿Qué estrategias podemos usar para resolver este problema?” // “What strategies can we use to solve this problem?”
Advances: Reading, Representing

Launch

  • Groups of 2
  • “¿Qué tipo de ingredientes les gusta poner en su ensalada?” // “What kind of ingredients do you like to put in your salad?” (lettuce, cabbage, beans, seeds, beets, tomatoes, cheese)
  • “¿Qué tipos de aderezos le ponen a su ensalada?” // “What kinds of dressings do you put on your salad?” (homemade, Italian, blue cheese, tamari)

Activity

  • 1–2 minutes: quiet think time
  • 6–8 minutes: small-group work time
  • Monitor for students who:
    • estimate to determine that Priya’s recipe will make about \(1\frac{1}{2}\) cups of dressing 
    • add \(\frac{3}{4} + \frac{1}{3}+\frac{1}{2}\) to determine the precise amount of dressing Priya’s recipe will make

Student Facing

Receta del aderezo de la ensalada de Priya

  • \(\frac{3}{4}\) de taza de aceite de oliva
  • \(\frac{1}{3}\) de taza de jugo de limón
  • \(\frac{1}{2}\) taza de mostaza
  • Una pizca de sal y pimienta

  1. Priya tiene \(\frac{2}{3}\) de taza de aceite de oliva. Ella le va a pedir un poco a su vecino. ¿Cuánto aceite de oliva necesita pedirle si quiere tener suficiente para preparar su aderezo?

  2. 1 cucharada es igual a \(\frac{1}{16}\) de una taza. Priya decide que solo necesita pedirle a su vecino 1 cucharada de aceite de oliva. ¿Estás de acuerdo con Priya? Explica o muestra cómo razonaste.

  3. Priya dice que con su receta se podrán preparar aproximadamente \(1\frac{1}{2}\) tazas de aderezo. ¿Estás de acuerdo? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “Si Priya le pide a su vecino una cucharada de aceite de oliva y la usa para preparar el aderezo, ¿ella pondrá más aceite o menos aceite del que se necesita para la receta?” // “If Priya borrows a tablespoon of olive oil from her neighbor and uses it to make dressing, will she be putting in more or less olive oil than the recipe calls for?” (\(\frac{1}{16}\) is smaller than \(\frac{1}{12}\) so she will be putting in less olive oil.)
  • “¿Creen que 1 cucharada se acerca lo suficiente?” // “Do you think 1 tablespoon is close enough?”
  • Poll the class.
  • “¿Cómo podría cambiar el aderezo de la ensalada por la decisión de Priya de usar 1 cucharada de aceite de oliva?” // “How might Priya’s decision to use 1 tablespoon of olive oil change the salad dressing?” (It won’t make a difference because the difference is so small. It might taste more lemony or more mustardy because there is not as much oil. It might affect the consistency of the dressing a little.)
  • Ask previously selected students to share their estimates for the amount of salad dressing in the given order.
  • “¿Por qué Priya podría estimar que se preparan \(1\frac{1}{2}\) tazas de aderezo de ensalada con la receta?” // “Why might Priya estimate that the recipe makes \(1\frac{1}{2}\) cups of salad dressing?” (\(\frac{3}{4}\) is \(\frac{1}{4}\) away from 1 and \(\frac{1}{3}\) is close to \(\frac{1}{4}\).)
  • “¿Con la receta se preparan más de o menos de \(1\frac{1}{2}\) tazas? ¿Cómo lo saben?” // “Does the recipe make more or less than \(1\frac{1}{2}\) cups? How do you know?” (More because \(\frac{1}{3}\) is more than \(\frac{1}{4}\).)
  • “¿Cuántas tazas se preparan con la receta de Priya? ¿Cómo lo saben?” // “How many cups does Priya’s recipe make? How do you know?” (\(1\frac{7}{12}\), I added \(\frac{1}{3}\), \(\frac{3}{4}\), and \(\frac{1}{2}\).)

Activity 2: Más problemas por resolver (15 minutes)

Narrative

The purpose of this activity is for students to solve multi-step problems involving the addition and subtraction of fractions with unlike denominators. Students work with both fractions and mixed numbers and can use strategies they have learned such as adding on to make a whole number. When students connect the quantities in the story problem to an equation, they reason abstractly and quantitatively (MP2).

Representation: Access for Perception. Read both problems aloud. Students who both listen to and read the information will benefit from extra processing time.
Supports accessibility for: Conceptual Processing, Language

Launch

  • Groups of 2
  • “Ustedes y su compañero van a escoger cada uno un problema diferente y lo van a resolver. Luego, van a discutir sus soluciones” // “You and your partner will each choose a different problem to solve and then you will discuss your solutions.”

Activity

  • 3–5 minutes: independent work time
  • 3–5 minutes: partner discussion

Student Facing

  1. Escoge un problema y resuélvelo.

    Problema A:

    Jada hornea barras de proteína para una caminata. Ella agrega \(\frac{1}{2}\) taza de nueces y después decide agregar \(\frac{1}{3}\) de taza. ¿Cuántas tazas de nueces agregó en total?

    Si se necesitan \(1\frac{1}{3}\) tazas de nueces para la receta, ¿cuántas tazas de nueces más debe agregar Jada? Explica o muestra cómo razonaste.

    Problema B:

    Kiran y Jada caminaron \(1 \frac{1}{2}\) millas y tomaron un descanso. Después, caminaron \(\frac{4}{10}\) de milla más antes de parar a almorzar. ¿Cuántas millas han caminado hasta el momento?

    Si el sendero por el que están caminando mide \(2\frac{1}{2}\) millas en total, ¿cuánta distancia más tienen que caminar? Explica o muestra cómo razonaste.

  2. Discute los problemas y las soluciones con tu compañero. ¿En qué se parecen sus estrategias y sus soluciones? ¿En qué son diferentes?
  3. Si es necesario, ajusta lo que escribiste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿En qué se parecían los problemas? ¿En qué eran diferentes?” // “How were the problems the same? How were they different?” (For both problems I had to add fractions first and then subtract that total from another number. There were mixed numbers in both problems.)
  • “¿Cómo usaron fracciones equivalentes para resolver estos problemas?” // “How did you use equivalent fractions to solve these problems?” (All the fractions we worked with had different denominators so we had to find equivalent fractions with the same denominators in order to add or subtract.)

Lesson Synthesis

Lesson Synthesis

“Hoy resolvimos problemas en los que fue necesario sumar y restar fracciones” // “Today we solved problems that required adding and subtracting fractions.”

Display Priya‘s salad dressing recipe.

“¿Qué estrategia usaron para encontrar cuánto aderezo de ensalada se preparaba con la receta de Priya?” // “What strategy did you use to find out how much salad dressing Priya’s recipe makes?” (The denominators for the fractions are 2, 3 and 4 so I used 12 because I know that it is a multiple of 2, 3, and 4. I put the half and fourths together first since I could use 4 as a common denominator and then I used 12 to add the fourths and third.

Display: \(\frac{1}{12} - \frac{1}{16}\)

“¿Qué estrategia usaron para encontrar esta diferencia en el problema del aceite de oliva?” // “What strategy did you use to find this difference for the olive oil?” (I knew that 48 is \(4 \times 12\) and \(3 \times 16\) so I used that as a common denominator. I used \(12 \times 16\) as a common denominator.)

“¿Cómo deciden cuál estrategia usar?” // “How do you decide which strategy to use?” (It depends on the numbers. If I know a small common multiple of the denominators, I use that. If I don’t, I can always use the product of the denominators.)

Cool-down: Evalúa expresiones (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.