Lesson 19

Comparemos con 1

Warm-up: ¿Qué sabes sobre $\frac{15}{14}\times\frac{23}{30}$? (10 minutes)

Narrative

The purpose of this What Do You Know About _____ is for students to share what they know about and how they can represent the product \(\frac{15}{14}\times\frac{23}{30}\). The numbers were intentionally chosen to make finding the exact value of the product challenging.

Launch

  • Display the expression.
  • “¿Qué saben sobre \(\frac{15}{14}\times\frac{23}{30}\)?” // “What do you know about \(\frac{15}{14}\times\frac{23}{30}\)?”
  • 1 minute: quiet think time

Activity

  • Record responses.
  • “¿Cómo podríamos encontrar el valor del producto \(\frac{15}{14}\times\frac{23}{30}\)?” // “How could we find the value of the product \(\frac{15}{14}\times\frac{23}{30}\)?” (Find the product of the numerators and the product of the denominators.)

Student Facing

¿Qué sabes sobre \(\frac{15}{14}\times\frac{23}{30}\)?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿\(\frac{15}{14}\times\frac{23}{30}\) es menor que, igual a o mayor que \(\frac{23}{30}\)? ¿Por qué?” // “Is \(\frac{15}{14}\times\frac{23}{30}\) less than, equal to, or greater than \(\frac{23}{30}\)? Why?” (It is greater since \(\frac{15}{14}\) is greater than 1.)

Activity 1: Comparemos productos de fracciones en la recta numérica (15 minutes)

Narrative

The goal of this activity is to continue to compare the size of a product of fractions to the size of the second factor. In addition to the number line representation which students have worked with in the last few lessons, they also see a different expression that represents the product. In the next activity, this expression will be combined with the distributive property to explain in all cases why multiplying a number by a fraction less than one results in a smaller number while multiplying by a fraction greater than one results in a larger number (MP8).

MLR8 Discussion Supports. Students should take turns finding a match and explaining their reasoning to their partner. Display the following sentence frames for all to see: “Observé _____, entonces agrupé . . .” // “I noticed _____, so I matched . . . .” Encourage students to challenge each other when they disagree.
Advances: Representing, Conversing

Launch

  • Groups of 2

Activity

  • 1–2 minutes: quiet think time
  • 6–8 minutes: partner work time

Student Facing

  1. Agrupa las expresiones y las rectas numéricas que muestran el mismo valor.

    • \(\frac{2}{5} \times \frac{4}{3}\)
    • \(\frac{3}{4} \times \frac{5}{2}\)
    • \(\frac{4}{3} \times \frac{5}{2}\)

    • \(\left(1+\frac{1}{3}\right) \times \frac{5}{2}\)
    • \(\left(1-\frac{3}{5}\right) \times \frac{4}{3}\)
    • \(\left(1-\frac{1}{4}\right) \times \frac{5}{2}\)

    ANumber line. 

    BNumber line.

    CNumber line. 

  2. Escoge una de las expresiones de cada grupo y explica si el valor es mayor que o menor que el segundo factor.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share their matches.
  • “¿Cómo encontraron la recta numérica que correspondía a \(\frac{3}{4} \times \frac{5}{2}\)?” // “How did you find the matching number line for \(\frac{3}{4} \times \frac{5}{2}\)?” (I saw that two of the number lines have \(\frac{5}{2}\) on them and looked for the one that showed \(\frac{3}{4}\) of \(\frac{5}{2}\). I knew which one it was because \(\frac{3}{4}\) of \(\frac{5}{2}\) is less than \(\frac{5}{2}\).)
  • “¿Cómo encontraron la expresión que correspondía a \(\frac{3}{4} \times \frac{5}{2}\)?” // “How did you find the matching expression for \(\frac{3}{4} \times \frac{5}{2}\)?” (I looked for an expression with \(\frac{5}{2}\) and only one of them had another factor with the value \(\frac{3}{4}\).)
  • “¿Cómo supieron si el valor de \(\frac{3}{4} \times \frac{5}{2}\) era mayor que o menor que \(\frac{5}{2}\)?” // “How did you know whether the value of \(\frac{3}{4} \times \frac{5}{2}\) was greater than or less than \(\frac{5}{2}\)?” (I knew it was less because \(\frac{3}{4}\) is less than 1. That was what helped me find the right number line.)

Activity 2: Afirmación verdadera (20 minutes)

Narrative

The goal of this activity is to use the distributive property to explain why multiplying a number by a fraction greater than one increases the size of the number while multiplying by a fraction less than one decreases the size of the number. Expressions are particularly useful here because they show explicitly how the size of the number relates to the product. For example writing \(\frac{3}{5}\) as \(1 - \frac{2}{5}\) and then multiplying by \(\frac{4}{7}\) gives: \(\displaystyle \left(1 - \frac{2}{5}\right) \times \frac{4}{7} = \frac{4}{7} - \left(\frac{2}{5} \times \frac{4}{7}\right)\)

The revealing part of this calculation is that the structure of the right hand side shows that it is less than \(\frac{4}{7}\) without calculating the exact value (MP7). It must be less than \(\frac{4}{7}\) because it is \(\frac{4}{7}\) minus some other number.

Engagement: Internalize Self-Regulation. Provide students an opportunity to self-assess and reflect on their own progress. For example, provide students with questions that relate to the size of the factors for them to reflect on once the activity is complete.
Supports accessibility for: Conceptual Processing, Attention, Memory

Launch

  • Groups of 2

Activity

  • 1–2 minutes: quiet think time
  • 8–10 minutes: partner work time
  • Monitor for students who use the expressions in the first problem to make the comparisons and then generalize about what happens when you multiply a number by any fraction greater than 1 or less than 1.

Student Facing

  1. Reescribe cada expresión como una suma o una diferencia de 2 productos.

    1. \(\left(1 - \frac{2}{5}\right) \times \frac{4}{7}\)

    2. \(\left(1 + \frac{1}{5}\right)\times \frac{4}{7}\)

    3. \(\left(1 - \frac{3}{8}\right)\times \frac{4}{7}\)

    4. \(\left(1 + \frac{1}{8}\right)\times \frac{4}{7}\)

  2. En cada caso, llena el espacio en blanco con un \(<\) o un \(>\) para que la desigualdad sea verdadera.
    1. \(\left(1 - \frac{2}{5}\right)\times \frac{4}{7} \,\underline{\hspace{0.9cm}} \,\frac{4}{7}\)
    2. \(\left(1 + \frac{1}{5}\right)\times \frac{4}{7} \,\underline{\hspace{0.9cm}}\, \frac{4}{7}\)
    3. \(\left(1 - \frac{3}{8}\right)\times \frac{4}{7} \,\underline{\hspace{0.9cm}} \,\frac{4}{7}\)
    4. \(\left(1 + \frac{1}{8}\right)\times \frac{4}{7} \,\underline{\hspace{0.9cm}} \,\frac{4}{7}\)
  3. Describe el valor del producto que se obtiene cuando \(\frac{4}{7}\) se multiplica por una fracción mayor que 1. Explica tu razonamiento.
  4. Describe el valor del producto que se obtiene cuando \(\frac{4}{7}\) se multiplica por una fracción menor que 1. Explica tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share their expressions for the products in the first problem.
  • Display the equation: \(\left(1 - \frac{2}{5}\right)\times \frac{4}{7} = \frac{4}{7} - \left(\frac{2}{5} \times \frac{4}{7}\right)\)
  • “¿Cómo pueden darse cuenta de que el valor de la expresión es menor que \(\frac{4}{7}\)?” // “How can you see that the value of the expression is less than \(\frac{4}{7}\)?” (It’s \(\frac{4}{7}\) minus something.)
  • “¿Este razonamiento también funciona para \(\left(1 - \frac{3}{8}\right)\times \frac{4}{7}\)?” // “Does this reasoning also work for \(\left(1 - \frac{3}{8}\right)\times \frac{4}{7}\)?” (Yes, it’s again \(\frac{4}{7}\) minus some other number.)
  • “¿Este razonamiento también va a funcionar si se multiplica un número menor que 1 por \(\frac{4}{7}\)?” // “Will this reasoning work whenever you multiply a number less than 1 by \(\frac{4}{7}\)?” (Yes, I’ll always get \(\frac{4}{7}\) minus an amount so that’s less than \(\frac{4}{7}\).)

Lesson Synthesis

Lesson Synthesis

“Hoy comparamos el valor de un producto de fracciones con el valor de uno de los factores, sin necesidad de calcular el producto” // “Today we compared the value of a product of fractions to the value of one of the factors without calculating the product.”

Display product: \(\frac{7}{9} \times \frac{15}{13}\).

“¿De qué formas pueden comparar el valor del producto con \(\frac{15}{13}\)?” // “What are some ways you can compare the value of the product with \(\frac{15}{13}\)?” (I can calculate the value, but the numbers are complicated. I can make a number line diagram and see that it is to the left of \(\frac{15}{13}\). I can rewrite \(\frac{7}{9}\) as \(1-\frac{2}{9}\) and see that it is less.)

“¿De qué formas pueden comparar el valor del producto con \(\frac{7}{9}\)?” // “What are some ways you can compare the value of the product with \(\frac{7}{9}\)?” (I can calculate the value. I can make a number line diagram and see that it is to the right of \(\frac{7}{9}\). I can rewrite \(\frac{15}{13}\) as \(1+\frac{2}{13}\) and see that it is more.)

Cool-down: Compara sin calcular (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

Number line. 2 tick marks, labeled 0, 4 sevenths. Point between the tick marks, labeled 3 fifths times 4 sevenths. 

En esta sección, aprendimos a comparar el tamaño de un producto con el tamaño de los factores. Por ejemplo, para comparar \(\frac{3}{5} \times \frac{4}{7}\) con \(\frac{4}{7}\), podemos ubicarlos en una recta numérica.
\(\frac{3}{5}\) son 3 partes de las 5 partes iguales en las que está partido el total. Acá el total es \(\frac{4}{7}\), por eso \(\frac{3}{5} \times \frac{4}{7}\) está a la izquierda de \(\frac{4}{7}\), es solo parte del total. También podemos darnos cuenta de esto si escribimos \(\frac{3}{5}\) como \(1 - \frac{2}{5}\).

\(\left(1 - \frac{2}{5}\right)\times \frac{4}{7} = \frac{4}{7} - \left(\frac{2}{5} \times \frac{4}{7}\right)\)

El producto es menor que \(\frac{4}{7}\) porque es \(\frac{4}{7}\) menos una fracción.