Lesson 15

Resolvamos problemas usando diagramas de puntos

Warm-up: Conversación numérica: Multipliquemos por 18 (10 minutes)

Narrative

The purpose of this Number Talk is to for students to demonstrate strategies and understandings they have for multiplying whole numbers by fractions. These understandings help students develop fluency and will be helpful later in this lesson when students will need to be able to solve problems involving multiplication of a whole number by a fraction.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(\frac{1}{3}\times18\)
  • \(\frac{2}{3}\times18\)
  • \(\frac{4}{3}\times18\)
  • \(\frac{5}{3}\times18\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué patrones observan en los productos?” // “What patterns do you notice in the products?” (There is an 18 in one factor for all of them and it’s always some number of thirds. Once I know the value of \(\frac{1}{3} \times 18\), I can find the rest by multiplying by the number of thirds.)

Activity 1: Falta de información: Recolección de frutas (25 minutes)

Narrative

This Info Gap activity gives students an opportunity solve problems about data represented on line plots. In both sets of cards, there is a partially complete line plot and some missing data.

For the first set of cards, the problem card has the missing data and the data card has a partially complete line plot. Monitor for students who:

  • request all the information on the data card and create a complete line plot which they may use to answer the question
  • only request the information they need to answer the question about the heaviest apricot and the most common weight

For the second set of cards, the problem card has the partially complete line plot and the data card has information to determine the missing data. Here students will likely need to communicate with each other as the information about the most common weight is vital to solve the problem, but the student with the problem card may not think to ask about this.

The Info Gap allows students to refine the language they use and ask increasingly more precise questions until they get the information they need (MP6).

Representation: Access for Perception. Provide appropriate reading accommodations and supports to ensure student access to written directions, word problems, and other text-based content.
Supports accessibility for: Conceptual Processing, Memory

Required Materials

Materials to Copy

  • Info Gap: Picking Fruit, Spanish

Required Preparation

  • Create a set of cards from the blackline master for each group of 2.

Launch

  • Groups of 2

MLR4 Information Gap

  • Recall, if necessary, the steps of the info gap routine.
  • “Yo les voy a dar una tarjeta de problema o una tarjeta de datos. Lean su tarjeta en silencio. No se la muestren ni se la lean a su compañero” // “I will give you either a problem card or a data card. Silently read your card. Do not read or show your card to your partner.”
  • Distribute the first set of cards.
  • Remind students that after the person with the problem card asks for a piece of information, the person with the data card should respond with: “¿Por qué necesitas saber _____?” // “Why do you need to know _____ [that piece of information]?”

Activity

  • 8–10 minutes: partner work time
  • After students solve the first problem, distribute the next set of cards. Students switch roles and repeat the process with Problem Card 2 and Data Card 2. 

Student Facing

Tu profesor te dará una tarjeta de problema o una tarjeta de datos. No se la muestres ni se la leas a tu compañero.

Haz una pausa aquí para que tu profesor pueda revisar tu trabajo.

Pídele al profesor un nuevo grupo de tarjetas. Intercambia roles con tu compañero y repite la actividad.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué tipos de preguntas fueron los más útiles?” // “What kinds of questions were the most useful to ask?”
    • (Card 1: I asked for the heaviest apricot and then realized it was one of the ones on my card. Then I asked for the most common weight and could solve the problem.
    • Card 2: I needed to find out what the rest of the apricot weights were. I tried asking for that but my partner did not have that information. My partner told me she had some information about the heaviest apricot and the most common weight and once I found that out I was able to solve the problem.)
  • Invite students to share their strategy for solving one of the problems.
  • Consider asking “¿Alguien resolvió el problema de otra forma?” // “Did anyone solve the problem in a different way?”

Activity 2: Preguntas matemáticas [OPTIONAL] (10 minutes)

Narrative

The purpose of this optional activity is for students to answer questions about a line plot using the same context as the previous activity. Students relate repeated addition of the same fraction to multiplication which they studied in a previous unit. They also address a question about the sum of all of the data. Because there is a lot of data, there are many viable strategies to answer this question and the synthesis focuses on sharing these strategies. 

When students solve problems about the apricot weights using the line plot, they reason abstractly and quantitatively (MP2).

Launch

  • Groups of 2

Activity

  • 1–2 minutes: quiet think time
  • 5–6 minutes: partner work time
  • When students decide whether or not the apricots altogether weigh more than 1 pound, monitor for these strategies:
    • adding up all the weights, in ounces, to see if they weigh more than 1 pound
    • estimating the sum but not calculating it exactly
    • calculating the total weight of the apricots that weigh \(1\frac{5}{8}\) ounces and then using the structure of the graph

Student Facing

Este diagrama de puntos muestra los pesos de algunos albaricoques que recolectó Mai.

Dot plot titled Mai's Apricots from 0 to 3 by 1’s.
  1. ¿Qué fracción de los albaricoques pesa menos de \(1\frac{1}{2}\) onzas? Explica o muestra cómo razonaste.
  2. Escribe una ecuación de multiplicación que represente el peso total de los albaricoques que pesan \(1\frac{5}{8}\) onzas cada uno.
  3. En total, ¿todos los albaricoques de Mai pesan más de o menos de una libra? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite previously selected students to share their equation for the total weight of the \(1\frac{5}{8}\) ounce apricots.
  • Display the equation: \(5 \times 1 \frac{5}{8} = 8 \frac{1}{8}\).
  • “¿Pueden usar esta información para decidir si los albaricoques pesan más de una libra o no?” // “Can you use this information to help decide whether or not the apricots weigh more than a pound?”
    • (Yes. There are 10 more apricots, and except for one, they all weigh more than an ounce so that will be more than 16 ounces for sure.
    • Yes. I added up all the weights and it was more than 16 ounces.
    • Yes. The 5 apricots that weigh \(1\frac{5}{8}\) ounces together are more than \(\frac{1}{2}\) pound. So the 5 heavier apricots are also more than \(\frac{1}{2}\) pound so together they weigh more than 1 pound.)

Lesson Synthesis

Lesson Synthesis

“Hemos sumado, restado y multiplicado fracciones para resolver problemas sobre diagramas de puntos” // “We have added, subtracted, and multiplied fractions to solve problems about line plots.”

“¿Cómo usamos estas operaciones para resolver problemas sobre diagramas de puntos?” // “In what ways did we use these operations to help us solve problems about line plots?” (Line plots have a lot of different data and the data had fractions so when we answered questions about the data we had to add, subtract, or multiply.)

“¿Cuál fue su problema favorito sobre diagramas de puntos?” // “Which was your favorite problem about line plots?” (The eggs because I thought the picture was really interesting.)

Cool-down: Reflexiona (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección aprendimos a sumar y a restar fracciones. Cuando los denominadores son el mismo, como en \(\frac{7}{10} + \frac{4}{10}\), basta con sumar los décimos: hay 11 de ellos, así que \(\frac{7}{10} + \frac{4}{10} =  \frac{11}{10}\). Cuando los denominadores son diferentes, como en \(\frac{1}{6} + \frac{3}{8}\), buscamos un denominador común para poder sumar partes del mismo tamaño. Una forma de encontrar un denominador común es usar el producto de los dos denominadores (en este caso, \(6 \times 8\)) porque el producto siempre es un múltiplo de ambos denominadores. Al usar 48 como denominador, encontramos que \(\frac{1}{6} + \frac{3}{8} = \frac{1 \times 8}{6 \times 8} + \frac{3 \times 6}{8 \times 6}\). Esto quiere decir que \(\frac{1}{6} + \frac{3}{8} = \frac{26}{48}\). En el caso de la expresión \(\frac{1}{6} + \frac{3}{8}\), también podemos usar un denominador común más pequeño. Como \(24\) es un múltiplo de 6 y de 8, también podemos reescribir \(\frac{1}{6} + \frac{3}{8}\) como \(\frac{4}{24} + \frac{9}{24}\), que es \(\frac{13}{24}\).