Lesson 3
Conversión de unidades métricas y multiplicación por potencias de diez
Warm-up: Conversación numérica (10 minutes)
Narrative
In this number talk, students find products of a decimal number and a power of 10 and quotients of a whole number and a power of 10 whose value is a decimal. This skill will be useful throughout the next several lessons as students convert between different metric units of measurement and also specifically address how a whole or decimal number changes when it is multiplied or divided by a power of 10.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(100 \times 1.5\)
- \(1,\!000 \times 1.5\)
- \(15 \div 10\)
- \(15 \div 100\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿En qué se parecen los valores de las expresiones?” // “What is the same about the values of the expressions?” (There is a 1 and a 5 in each value.)
- “¿En qué son diferentes los valores de las expresiones?” // “What is different about the values of the expressions?” (Some of them are whole numbers and some are decimals.)
Activity 1: ¿Qué tan alto? ¿Qué tan largo? ¿Qué tan lejos? (20 minutes)
Narrative
The goal of this activity is to convert meters to centimeters and millimeters and to convert kilometers to meters. This metric measurement context gives students an opportunity to observe several patterns (MP7).
- When students convert from meters to centimeters or multiply by 100, the digits shift 2 places to the left.
- When students convert from kilometers to meters or multiply by 1,000, the digits shift 3 places to the left.
Supports accessibility for: Conceptual Processing, Memory
Required Materials
Materials to Gather
Launch
- Groups of 2
- Give students access to meter sticks.
- Display image from student workbook.
- “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
- Display additional information about track and field events:
- The height of a hurdle is 1 meter.
- The approximate distance between hurdles in 110 meter races is 10 meters.
- The shortest race in many track competitions is 100 meters.
- “Completen los problemas con su compañero” // “Work with you partner to complete the problems.”
Activity
- 1–2 minutes: quiet think time
- 8–10 minutes: partner work time
- Monitor for students who observe that:
- the digits shift 2 places to the left when converting from meters to centimeters or multiplying by 100
- the digits shift 3 places to the left when converting from kilometers to meters or multiplying by 1,000
Student Facing
- Completa la tabla.
metros centímetros milímetros 1 10 \(10^2\) - ¿Qué patrones observas en la tabla?
- Hay tres carreras de larga distancia: de 10 kilómetros, de 100 kilómetros y de 1,000 kilómetros. ¿Cuántos metros de distancia tiene cada carrera?
distancia en kilómetros distancia en metros 1 1,000 10 100 \(10^3\) - ¿Qué patrones observas en la tabla?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not fill in the tables show them a meter stick and ask, “¿Cómo puedes usar la vara de un metro para completar la primera fila de la tabla?” // “How can you use the meter stick to fill in the first row of the table?”
Activity Synthesis
- Display completed tables for all to see.
- Invite students to share patterns they observed in the tables.
- “¿En qué se parecen las tablas? ¿En qué son diferentes?” // “How are the tables the same? How are they different?” (Some of the numbers in the tables are the same. Some of the relationships are the same. Going from meters to millimeters is the same as going from kilometers to meters because they are both 1,000 times greater. The second table only has two columns but has a bigger number, 1,000,000.)
- “Después de haber hecho la conversión de kilómetros a metros, ¿qué observan acerca de la ubicación del 1 y de la cantidad de ceros?” // “What do you notice about the location of the 1 and the number of zeros after converting from kilometers to meters?” (Each number in the meters column has three more zeros than the number in the kilometers column. The one in each number in the meters column is three places to the left of the corresponding number in the kilometers column.)
Activity 2: Salto de longitud (15 minutes)
Narrative
The purpose of this activity is for students to convert from meters to centimeters using the context of a standing broad jump, a common test for physical fitness. Students may multiply by 100 to convert from meters to centimeters or divide by 100 to convert from centimeters to meters. Students should be encouraged to use whatever strategy makes sense to them. Future lessons will focus specifically on conversion from centimeters to meters. Give students access to meter sticks.
Advances: Speaking
Required Materials
Materials to Gather
Launch
- Groups of 2
- Display the image from student workbook.
- Give students access to meter sticks.
- “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?” (The girl is jumping. There are numbers on the mat. Did she start where the footprints are? How far did she jump?)
Activity
- 1–2 minutes: quiet think time
- 6–8 minutes: partner work time
- Monitor for students who:
- use their result for Tyler’s jump in centimeters to find his jump in millimeters
- use the result in meters to find how far Tyler jumped in millimeters
Student Facing
Estas son las distancias que saltó cada estudiante.
estudiante | distancia |
---|---|
Mai | 1.61 metros |
Tyler | 1.43 metros |
Clare | 1.57 metros |
- La distancia promedio del salto de longitud sin carrera de los estudiantes de grado 5 es 148 centímetros. ¿Los estudiantes de la tabla están por debajo del promedio, en el promedio o por encima del promedio? Explica o muestra cómo razonaste.
- El récord mundial de salto de longitud sin carrera es 337 centímetros. Jada dice que eso es más que lo que Mai y Clare saltaron juntas. ¿Estás de acuerdo con Jada? Explica o muestra cómo razonaste.
- Tyler dice que su salto suena más impresionante si lo dice en milímetros.
- ¿Cuál es la distancia del salto de Tyler, en milímetros?, ¿y las distancias de los saltos de Mai y Clare?
- ¿En qué unidad crees que es mejor decir los saltos? Explica tu razonamiento.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not know the relationship between millimeters, centimeters, and meters, show them a meter stick and ask “¿Cómo puedes usar la vara de un metro para averiguar cuántos milímetros hay en 1 metro?” // “How can you use the meter stick to figure out how many millimeters are in 1 meter?”
Activity Synthesis
- Display the expression: \(1.43 \times 100\).
- “¿Cómo representa esta expresión el salto de Tyler, en centímetros?” // “How does this expression represent Tyler’s jump in centimeters?” (There are 100 centimeters in a meter.)
- Invite students to share how they found Tyler’s jump in millimeters.
- Display the expression: \((1.43 \times 100) \times 10\).
- “¿En qué unidad de medida está representado el salto de Tyler en esta expresión? ¿Cómo lo saben?” // “In what unit of measurement does this expression represent Tyler's jump? How do you know?” (It represents Tyler’s jump in millimeters. There are 10 millimeters in a centimeter and \(1.43\times100\) represents the centimeters, so if we multiply the number of centimeters by 10, we will get the number of millimeters.)
- Display the expression: \(1.43 \times 1,\!000\).
- “¿Cómo representa esta expresión el salto de Tyler, en milímetros?” // “How does this expression represent Tyler’s jump in millimeters?” (There are 1,000 millimeters in a meter so I have to multiply by 1,000 to get millimeters from meters.)
- Display the equation: \(1.43 \times 1,\!000 = (1.43 \times 100) \times 10\).
- Invite students to share which unit they prefer to express the distances that the students jumped.
- “Es importante que escojan una unidad que tenga sentido para ustedes” // “It’s important to choose a unit that makes sense to you.”
Lesson Synthesis
Lesson Synthesis
“Hoy hicimos conversiones entre distintas unidades métricas para expresar de varias formas unas distancias que estaban relacionadas con pruebas de atletismo” // “Today we converted between metric units to express distances related to track events in different ways.”
Display a table that looks like this:
kilómetros | metros | centímetros | milímetros |
---|---|---|---|
2.5 |
//
kilometers | meters | centimeters | millimeters |
---|---|---|---|
2.5 |
As students respond to the questions, record their responses in the table.
“Jada corrió 2.5 kilómetros. ¿Cuántos metros es eso?” // “Jada ran 2.5 kilometers. How many meters is that?” (2,500)
“¿Cuántos centímetros es eso?” // “How many centimeters is that?” (250,000)
“¿Cuántos milímetros es eso?” // “How many millimeters is that?” (2,500,000)
“¿Qué unidad usarían para decir qué distancia corrió Jada: kilómetros, metros, centímetros o milímetros?” // “Would you use kilometers, meters, centimeters, or millimeters to report how far Jada ran?” (Sample response: kilometers or meters because I can imagine how long those distances are and the numbers of centimeters and millimeters are too big to visualize.)
Cool-down: Kilómetros (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.