Lesson 17
Interpretemos diagramas
Warm-up: Exploración de estimación: Una fracción de un número entero (10 minutes)
Narrative
The purpose of this Estimation Exploration is to estimate the product of a fraction and a large whole number. Students know how to find the exact answer but it would require many calculations. Making an estimate will help develop the intuition that because \(\frac{5}{3}\) is greater than 1, the product has to be greater than the other factor. Students can make a better estimate by replacing the whole number 9,625 with a friendlier number that they can find \(\frac{1}{3}\) of mentally. Throughout this lesson, students will continue to compare the size of products to the size of one of the factors.
Launch
- Groups of 2
- Display the expression.
- “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”
- 1 minute: quiet think time
Activity
- 1 minute: partner discussion
- Record responses.
Student Facing
\(\frac{5}{3} \times 9,\!625\)
Escribe una estimación que sea:
muy baja | razonable | muy alta |
---|---|---|
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) | \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) | \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) |
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cómo sabemos que el producto va a ser mayor que 9,625?” // “How do we know the product is going to be greater than 9,625?” (\(\frac{5}{3}\) is more than 1 so the product is greater than the other factor, 9,625.)
- “¿Cómo sabemos que el producto va a ser mayor que 15,000?” // “How do we know the product is going to be greater than 15,000?” (\(\frac{1}{3}\times 9,\!000=3,\!000\) so \(\frac{5}{3}\times 9,\!000=15,\!000\) and we are trying to figure out what \(\frac{5}{3}\) of more than 9,000 is.)
Activity 1: Decide a qué diagramas corresponden (20 minutes)
Narrative
The goal of this activity is for students to match expressions and diagrams and then compare the value of each expression with one of the factors. To match the expressions with the diagrams students will likely use the meaning of multiplication. For example, \(\frac{2}{7} \times 3\) means 2 of 7 equal parts of 3 wholes. The area diagram shows the 7 parts with 2 shaded whereas the number line only shows the relative locations of \(\frac{2}{7} \times 3\) and 3, requiring students to understand the relationship between \(\frac{2}{7} \times 3\) and 3 in order to pick the right match. Once they have made the matches, the diagrams help to visualize that \(\frac{2}{7} \times 3\) is less than 3 and the activity synthesis highlights this. When students match diagrams and expressions they look for and identify structure in the number line and area diagrams (MP7).
Launch
- Groups of 2
Activity
- 1–2 minutes: quiet think time
- 8–10 minutes: partner work time
- Monitor for students who compare the numbers by:
- finding the value of the expressions
- using the number lines which show how the value of each expression compares to 3 or 5
- using the area diagrams which also show how the value of each expression compares to 3 or 5
Student Facing
-
Asocia cada expresión con los diagramas que le corresponden.
\(\frac{2}{7} \times 3\)
\(\frac{9}{7} \times 3\)
\(\frac{2}{7} \times 5\)
\(\frac{9}{7} \times 5\)
-
En cada caso, escribe un \(< \) o un \(> \) en el espacio en blanco para que la desigualdad sea verdadera.
- \(\frac{2}{7} \times 3\, \underline{\hspace{0.7cm}}\, 3\)
- \(\frac{9}{7} \times 3\, \underline{\hspace{0.7cm}} \,3\)
- \(\frac{2}{7} \times 5\, \underline{\hspace{0.7cm}}\, 5\)
- \(\frac{9}{7} \times 5 \, \underline{\hspace{0.7cm}}\, 5\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Display the expression: \(\frac{2}{7} \times 3\)
- “¿Cómo decidieron cuáles diagramas le corresponden a la expresión?” // “How did you decide which diagrams match the expression?” (For the area diagram I took the rectangle with length 3 and width less than 1. For the number line, I picked the one with 3 and a point that was less than 3.)
- Invite students to share how they compared \(\frac{2}{7} \times 3\) with 3, highlighting these strategies:
- reasoning about the size of \(\frac{2}{7}\)
- using the number line
- using the area diagram
Activity 2: ¿Quién corrió una mayor distancia? (15 minutes)
Narrative
The purpose of this activity is for students to compare a product to an unknown factor based on the size of the other factor. In this case, students cannot calculate the values of the products to compare but instead rely on their understanding of fractions and the meaning of multiplication. Students also use a number line to help them visualize the different distances after listing them in order. For this part of the activity the expectation is that they will use what they already know about the order of the distances to determine which point corresponds to each student. They might, however, also reason about the quantities. For example twice Priya’s distance can be found by marking off Priya’s position on the number line a second time (MP2).
Advances: Reading, Representing
Supports accessibility for: Memory, Conceptual Processing, Attention
Launch
- Groups of 2
- 1–2 minutes: quiet think time
Activity
- 6–8 minutes: partner work time
Student Facing
- Priya corrió a la casa de su abuela.
- Jada corrió el doble de la distancia que corrió Priya.
- Han corrió \(\frac{6}{7}\) de la distancia que corrió Priya.
- Clare corrió \(\frac{14}{8}\) de la distancia que corrió Priya.
- Mai corrió \(\frac{3}{5}\) de la distancia que corrió Priya.
- ¿Cuáles estudiantes corrieron una mayor distancia que Priya?\( \underline{\hspace{5.5cm}} \)
- ¿Cuáles estudiantes no corrieron tanta distancia como Priya?\( \underline{\hspace{5.5cm}} \)
- Haz una lista de los corredores en orden, según la distancia que corrieron, de la más corta a la más larga. Explica o muestra cómo razonaste.
-
El punto P representa cuánto corrió Priya. Los demás puntos representan cuánto corrieron los demás. En cada espacio en blanco, escribe la inicial del nombre del estudiante que corresponde. Uno de los estudiantes hará falta en la recta.
- Sobre la recta numérica del ejercicio anterior, marca la distancia del estudiante que falta.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Display:
\(\frac{3}{5} \times 2\)
\(\frac{6}{7} \times 2\)
\(\frac{14}{8} \times 2\)
\(2 \times 2\) - “¿Qué observan acerca de estas expresiones?” // “What do you notice about these expressions?” (They represent the amount that each person ran, if Priya’s distance is 2. They are all a number multiplied by 2. They are listed in increasing order.)
- “Si Priya hubiera corrido 4 millas, ¿qué expresiones de multiplicación podríamos escribir para representar cuántas millas corrieron los demás estudiantes?” // “What if Priya ran 4 miles? What multiplication expressions can we write to represent how many miles each of the other students ran?” (It would be just like the expressions above except that the 2 would be replaced with a 4.)
- Record expressions for all to see:
\(\frac{3}{5} \times 4\)
\(\frac{5}{7} \times 4\)
\(\frac{14}{8} \times 4\)
\(2 \times 4\) - “Si cambia la distancia de Priya, ¿cambia el orden de las distancias? ¿Por qué sí o por qué no?” // “Does the order of the distances change when Priya’s distance changes? Why or why not?” (No, the order of the products is the same as the order of the other factor, the multiple of Priya’s distance.)
Lesson Synthesis
Lesson Synthesis
“Hoy comparamos productos sin calcular sus valores” // “Today we compared products without calculating their values.”
Display: Han ran \(\frac{6}{7}\) as far as Priya.
“¿Cómo saben que Priya corrió una distancia mayor que la de Han?” // “How do you know Priya ran farther than Han?” (\(\frac{6}{7}\) of Priya‘s distance is just a fraction of her distance. It's \(\frac{1}{7}\) short of the full distance Priya ran. So Priya ran farther.)
Display image showing all student distances in activity 2 or a student generated solution.
“¿Cómo pueden saber quién corrió una distancia mayor que la de Priya?” // “How can you tell who ran farther than Priya?” (Clare and Jada are to the right of Priya on the number line so they ran farther.)
“En la siguiente lección, vamos a seguir usando la recta numérica para ubicar y comparar los valores de algunas expresiones de multiplicación que tienen fracciones” // “In the next lesson we are going to continue to use the number line to locate and compare the values of multiplication expressions with fractions.”
Cool-down: Libros leídos (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.