Lesson 7

Problemas de conversión de varios pasos: Longitud en unidades tradicionales

Warm-up: Conversación numérica: Múltiplos de 12 (10 minutes)

Narrative

This warm-up helps students develop strategies to find multiples of 12 mentally using place value strategies and the distributive property. This prepares students for converting measurements in feet to measurements in inches.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(45 \times 10\)
  • \(45 \times 2\)
  • \(45 \times 12\)
  • \(46 \times 12\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo se relacionan los valores de los productos \(45 \times 12\) y \(46 \times 12\)?” // “How are the values of the products \(45 \times 12\) and \(46 \times 12\) related?” (There is one more 12 in \(46 \times 12\).)

Activity 1: Clasificación de tarjetas: Medidas en unidades tradicionales (15 minutes)

Narrative

The goal of this activity is to compare measurements in the customary length units of inches, feet, and yards. Students first sort the measurements in a way that makes sense to them. Monitor for students who:

  • sort by the unit of measure
  • sort by the way the quantity is written (whole number, mixed number, fraction)

Then, students find the equivalent lengths and list the sets of equivalent lengths in increasing order. Four different lengths have been chosen and each one is presented in inches, feet, and yards. The activity synthesis highlights why expressing all the measurements using one unit is a convenient way to identify common measures and list them in increasing order. Give students access to yard sticks. 

MLR8 Discussion Supports. Students should take turns finding a match and explaining their reasoning to their partner. Display the following sentence frames for all to see: “Observé _____, entonces agrupé . . .” // “I noticed _____, so I matched . . . .” Encourage students to challenge each other when they disagree.
Advances: Conversing, Representing
Engagement: Develop Effort and Persistence. Chunk this task into more manageable parts. Give students a subset of the cards to start with and introduce the remaining cards once students have completed their initial set of matches.
Supports accessibility for: Conceptual Processing; Memory

Required Materials

Materials to Gather

Materials to Copy

  • Customary Measurement Card Sort, Spanish

Required Preparation

  • Create a set of cards from the blackline master for each group of 2.

Launch

  • Groups of 2
  • Give each group of students one set of pre-cut cards.
  • Display a yardstick.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?” (It shows feet and inches. It shows 36 inches. I wonder if it’s the same length as a meterstick.)

Activity

  • “En esta actividad, van a clasificar algunas tarjetas en las categorías que quieran. Cuando clasifiquen las medidas, escojan las categorías con su compañero” // “In this activity, you will sort some cards into categories of your choosing. When you sort the measurements, you should work with your partner to come up with categories.”
  • 4 minutes: partner work time
  • Select groups to share their categories and how they sorted their cards.
  • Choose as many different types of categories as time allows, but ensure that one set of categories identifies the way the quantity is written (whole number, mixed number, fraction).
  • “Ahora, con su compañero, agrupen las tarjetas que tienen medidas iguales. Después, para cada grupo que hayan formado, hagan una lista de las medidas del grupo en orden creciente” // “Now work with your partner to match the cards with equal measurements. Then, list the groups of matching measurements in increasing order.
  • 3 minutes: partner work time

Student Facing

  1. Tu profesor te dará un grupo de tarjetas que muestran distintas medidas. Clasifica las tarjetas en 2 categorías, las que quieras. Prepárate para explicar el significado de tus categorías.

    (Haz una pausa para escuchar las instrucciones del profesor).

  2. Agrupa las tarjetas que tengan medidas iguales. Después, para cada grupo que hayas formado, haz una lista de las medidas del grupo en orden creciente.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share the matches they made and how they know those cards go together.
  • Attend to the language that students use to describe their matches, giving them opportunities to describe how they know the measurements are equal.
  • Highlight the use of phrases, such as:
    • There are 12 inches in one foot.
    • There are 3 feet in one yard.
    • To find (a fraction) of a foot, I multiplied 12 by the fraction.
  • “¿Cómo compararon los grupos de medidas? ¿Por qué?” // “How did you compare the sets of measurements? Why?” (I chose one of the units, feet, and compared all of the measurements in that unit.)
  • “¿Por qué fue importante que todas las medidas estuvieran en la misma unidad para poder compararlas?” // “Why was it important for all of the measurements to be in the same unit in order to compare?” (That way I can just compare the numbers because they all have the same unit of measure.)

Activity 2: Correr una milla o dos (20 minutes)

Narrative

The goal of this activity is to solve multi-step conversion problems using customary length units. The given information for both problems is in fraction form. Students need to find the perimeter of the different fields and then investigate how many times around each field is a given number of miles. The first problem involves 3 steps:

  • find the perimeter of the rectangular field
  • find the total distance of 6 laps around the field
  • convert from yards to feet or feet to yards

The second problem has only two steps, but the number of laps is unknown and students need to find how many laps make at least 2 miles.

When students critically analyze Priya's claim that six laps of the soccer field is more than a mile, they critique the reasoning of others (MP3).

Required Preparation

  • Before the lesson, figure out a location that students would be familiar with that is about 1 mile away from the school. You will share this location in the launch to help students understand how far 1 mile is.

Launch

  • “¿Aproximadamente cuánta distancia es una milla?” // “About how far is a mile?”
  • 1–2 minutes: quiet think time
  • Record responses for all to see.
  • Describe to students a location that is about a mile away from the school.
  • “¿Aproximadamente cuántos pies hay en una milla?” // “About how many feet are in a mile?”
  • “¿Qué estimación sería muy baja?, ¿muy alta?, ¿razonable?” // “What is an estimate that is too low? Too high? About right?”
  • Record student responses in a table like this one:
    muy baja razonable muy alta

    //

    too low about right too high
  • Display: There are 5,280 feet in one mile.
  • Leave the display up throughout the lesson.
  • “Vamos a resolver algunos problemas sobre millas” // “We are going to solve some problems about miles.”

Activity

  • 7-10 minutes: partner work time
  • Monitor for students who:
    • find the number of yards in a mile
    • convert yards to feet for the first problem

Student Facing

  1. Un campo rectangular mide 90 yardas de largo y \(42\frac{1}{4}\) yardas de ancho. Priya dice

    que 6 vueltas alrededor del campo es más de una milla. ¿Estás de acuerdo con Priya? Explica o muestra cómo razonaste.

    image of a field.
  2. Otro campo rectangular mide \(408\frac{1}{2}\) pies de largo y \(240\frac{1}{4}\) pies de ancho. ¿Cuántas vueltas tendría que correr Priya alrededor de ese campo si quiere correr al menos 2 millas?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students don’t have a strategy to solve the first problem, consider asking:

  • “¿Puedes representar una persona que corre una vuelta alrededor del campo?” // “Can you represent a person running one lap around the field?”
  • “¿Cómo puedes averiguar la distancia que hay en una vuelta alrededor del campo?” // “How can you figure out the distance of one lap around the field?”

Activity Synthesis

  • Invite students to share their solutions to the first problem.
  • “¿Cómo encontraron cuánta distancia hay en 1 vuelta alrededor del campo?” // “How did you find how far 1 lap around the field is?” (I multiplied the length and width by 2 and added them.)
  • “¿Cuánta distancia hay en una vuelta?” // “How far is one lap?” (\(264\frac{1}{2}\) yards)
  • “¿Cuánta distancia hay en 6 vueltas? ¿Cómo lo saben?” // “How far is 6 laps? How do you know?” (1,587 yards, I multiplied \(264\frac{1}{2}\) by 6.)
  • “¿Cómo encontraron el producto \(6 \times 264\frac{1}{2}\)?” // “How did you find the product \(6 \times 264\frac{1}{2}\)?” (I multiplied 264 by 6. I know that \(6 \times \frac{1}{2}\) is 3 so I added that.)
  • “¿6 vueltas es más de o menos de una milla?” // “Is 6 laps more or less than a mile?” (Less, because it’s less than 5,000 feet. Less, because a mile is more than 1,700 yards.)

Lesson Synthesis

Lesson Synthesis

“Hoy hicimos conversiones entre distancias que estaban en unidades tradicionales” // “Today we converted between distances in customary units.”

Display: 10 feet

“¿Cuántas pulgadas hay en 10 pies?, ¿cuántas yardas?” // “How many inches are in 10 feet? How many yards?” (120 inches, \(3 \frac{1}{3}\) yards)

Display: 10 meters

“¿Cuántos centímetros hay en 10 metros?, ¿cuántos kilómetros?” // “How many centimeters are in 10 meters? How many kilometers?” (1,000 centimeters, 0.01 kilometer)

“¿En que se parecen hacer conversiones entre unidades métricas de longitud y hacer conversiones entre unidades tradicionales de longitud?” // “How is converting between metric length units the same as converting between customary length units?” (In each case I multiply by a number when going from a bigger unit to a smaller unit and I divide by a number when going from a bigger unit to a smaller unit.)

“¿En qué son diferentes hacer conversiones entre unidades métricas de longitud y hacer conversiones entre unidades tradicionales de longitud?” // “How is converting between metric length units different than converting between customary length units?” (When we convert in metric units we multiply or divide by a power of 10 so the digits in the measurement stay the same. In customary units the division or multiplication is not by a power of 10 so it takes more work, the digits change, and I may need to use fractions instead of decimals.)

Cool-down: El ancho del tablero (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección, estudiamos potencias de 10 y conversiones de unidades. Aprendimos formas de escribir productos de varios 10. Por ejemplo, podemos escribir \(\displaystyle 10 \times 10 \times 10 \times 10\) como \(10^4\). El número 4 es un exponente y significa que hay 4 factores de 10.

También hicimos conversiones de distintas unidades de medida, principalmente, medidas de longitud en unidades métricas. Por ejemplo, hay 1,000 milímetros en un metro y hay 1,000 metros en un kilómetro. Esto significa que hay \(1,\!000 \times 1,\!000\)\(1,\!000,\!000\) de milímetros en un kilómetro. También podemos decir que hay \(10^6\) milímetros en un kilómetro. Usamos nuestra comprensión de los números decimales para hacer conversiones. Por ejemplo, como hay 1,000 metros en un kilómetro, eso significa que cada metro es \(\frac{1}{1,000}\) o 0.001 kilómetros. Por eso, 853 metros también se puede escribir como 0.853 kilómetros.