Lección 7
Exponentes negativos
- Exploremos números con exponentes negativos.
7.1: Conversación numérica: Potencias de diez
Soluciona mentalmente cada ecuación:
\(\frac{100}{1}=10^x\)
\(\frac{1000}{x}=10^1\)
\(\frac{x}{100}=10^0\)
\(\frac{100}{1000}=10^x\)
7.2: Mantengamos el patrón
Completa la tabla.
forma exponencial | forma numérica | cálculos | |
---|---|---|---|
\(2^5\) | |||
16 | |||
\(\frac{2^4}{2}=2^{4-1}=2^3\) | \(2^3\) | ||
\(\frac{2^3}{2}=2^{3-1}=2^2\) | \(2^2\) | 4 | |
2 | \(4 \boldcdot \frac12=2\) | ||
1 | \(2 \boldcdot \frac12=1\) | ||
\(2^{\text-1}\) | \(\frac{1}{2}\) | ||
\(\frac{1}{4}\) | \(\frac12 \boldcdot \frac12 = \frac14\) | ||
\(2^{\text-3}\) | |||
\(2^{\text-4}\) | |||
\(\frac{1}{32}\) |
7.3: Emparejemos expresiones iguales
Por turnos, con tu compañero, empareja la expresión original con una expresión igual o equivalente que esté en la lista.
- Para cada pareja que encuentres, explícale a tu compañero cómo sabes que estas expresiones van juntas.
- Escucha con atención la explicación de tu compañero sobre cada pareja que encuentra. Si están en desacuerdo, discutan sus ideas y trabajen para llegar a un acuerdo.
¿Cuáles expresiones son iguales a \(8^0\)?
- 1
- 0
- \(8^3 \boldcdot 8^{-3}\)
- \(\frac{8^2}{8^2}\)
- \(11^0\)
¿Cuáles expresiones son iguales a \(5^{\text-2}\)?
- \(\text-5^2\)
- \(\frac{5^{0}}{5^2}\)
- \(\text-2^5\)
- \(\frac{1}{5^2}\)
- \(5^{\text-1} \boldcdot 5^{\text-1}\)
¿Cuáles expresiones son iguales a \(3^{10}\)?
- \(3^5\boldcdot3^2\)
- \(\left(3^5\right)^2\)
- \(3^7 \boldcdot 3^3\)
- \(3^{13} \boldcdot 3^{\text-3}\)
- \(\frac{3^{10}}{3^{0}}\)
¿Cuáles expresiones son iguales a \(x^{\text-4}\)?
- \(\frac{x^9}{x^5}\)
- \(\frac{x^5}{x^9}\)
- \(\frac{x^{3}}{x^{-1}}\)
- \(x\boldcdot x^{\text-5}\)
- \(\frac{1}{x^4}\)